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COMPUTER MODEL STUDIES IN MATERIALS SCIENCE

William Oldfield, Ph.D.
Stanford University, 1968

Computer models are the logical development of the Conceptual 

Model" approach. The basis of the computer model method has been outlined 

and illustrated by a model treatment of diffusive heat flow.
The computer model technique has been used to study a number of 

phenomena associated with materials. The methods which have been used have 

been classified as those designed to apply science to technology, and 

those to be employed on a more basic level. A model study of the freezing 

of cast iron has been described as an illustration of the first class of 

model. A computer model of a freezing cylindrical casting has been 

developed which simulates the production of real castings. The model fore­

casts the solidification sequence for the casting, the graphite structure 

variation, and the change of temperature with time at various positions 

within the casting. It was used to estimate the changes in microstructure 

induced by the solidification pattern, and it forecasts behavior which had 

never been observed previously. Subsequent experiments confirmed the 

predictions. A model study of dendrite growth has also been described in 

some detail. The model is noteworthy as the first treatment which does not 

invoke the "Maximum Velocity" criterion. The behavior of the model under 

restrictive conditions confirmed the analytical results of Ivantsov and 

Temkin. Free growth of the crystal model indicated that branching is 

initiated near the crystal tip, and that the branching process is associated 

with fluctuation of the growth velocity. The predicted sequence was subse­

quently observed by Morris and Winegard.
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The uses of computer models in several areas of Materials Science 

are briefly discussed and illustrated by the descriptions of a model which 

simulates Ostwald "ripening", and a model which synthesises the patterns 

produced by crystal defects under electron beam microscopy.
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SECTION A

AN INTRODUCTION TO THE USE OF 
COMPUTER MODELS IN MATERIALS SCIENCE
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CHAPTER 1: INTRODUCTORY IDEAS

1. The Model Concept

The idea of a model is a familiar one. In our childhood, we have 

models of all kinds and through them, as children, we learn a great deal 

about the world around us. The models we played with told us about the 

objects which they represented. The simplest models included only the 

most obvious features. For example, a model car might only simulate the 

shape of the full size vehicle and also its ability to move. More sophis­

ticated models might have had speed control and features such as steering 

which allow the performance of the model to approximate more closely to the 

real object. From this we may conclude that a model simulates only some 

features of the real thing. More complex models might simulate a few fea­

tures more closely or might include more of the properties of the article 

modelled. The model must neglect some aspects of the article or else it 

would no longer be a model but simply a copy. For example, a common fea­

ture of most toys is that they simulate the shape of an object very well 

but usually neglect to copy the size. Thus, a model car is more readily 

made and handled than a full size automobile.
A common technological use of models is for the prediction of the 

behavior of complex objects such as bridges, boats, airplanes, and river 

estuaries. These examples underline the characteristics of models which 

were suggested in the previous paragraph. A model used in the tank testing 

of a ship design, unlike a toy bears no resemblance to the real ship. Only 

the wetted areas of the design are reproduced and the parts of the boat 

above the waterline are ignored. The model can therefore be seen to be
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specific, that is, related to only a few properties of the ship. A number 

of different models may be used to study different aspects of the same 

object. For example, an airplane may be modelled by an airfoil used in 

windtunnel experiments, by a wooden mock-up used to study passenger accomo­

dation or by a small-scale replica used by company salesman to attract 

prospective customers. All the models may represent different aspects of

the same aircraft.
Our understanding of our environment is based upon the construc­

tion of a different sort of model. This model is a mental construction 

made from familiar ideas through which we can understand more novel phe­

nomena. Such abstract models have most of the properties of the concrete 

ones which we have discussed. They may be exemplified by the models which 

have been developed for crystal structures. These are considered in one 

view as collections of incompressible spheres. In another, as an assembly 

of energy wells. Still another might view a crystal as a regular arrange­

ment of points in space.
On the basis of our mental constructs or models, we are able to 

derive mathematical relationships which relate properties with variables. 

The crystal models make a good example. On the basis of mechanics, we can 

predict the mechanical behavior of an assembly of minute incompressible 

spheres. If the predictions agree with experimental results, the predic­

tions can be generalized. The sequence of ideas is as follows :

Conceptual model

Mathematical model
I ,Experimental tests
IGeneralization
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In the applied sciences (such as materials science) we are often 

faced with situations which cannot be treated in this way. Although we can 

develop simple constructs by which we can understand separate components of 

the problem, the property of interest results from the simultaneous opera­

tion of several separate models. Alternately, we can describe the phenomenon 

by means of a single model, but it then becomes too complex for the more 

traditional form of mathematical formulation. This is a problem area which 

has in the past included most of technology. At the best, the scientific 

approach has supplied insights which relate to terminal cases in which one 

or more of the simple models can be assumed to be dominant. Because of 

this, experimentation is very restricted in scope, generally having a narrow

domain of applicability.
Since the advent of the numerical computer, we have seen many 

inroads into this area. The most common approach has been to develop a 

g ingle, complex model to give a mathematical formulation which cannot be 

solved generally. Then the computer is used to solve the resulting rela­

tionships for specific conditions. The advantages of this approach lie in 

the universal nature of mathematics. Procedures have been evolved by 

which most mathematical problems can in principle be handled with facility, 

with little computer programming. The disadvantages are twofold. First, 

because the mathematical expressions are very general, the computer treat­

ment might be extremely cumbersome. This factor may become so large that 

an unacceptable amount of computer time would be needed to yield a solution. 

For the particular model in hand, a more specific formulation might yield 

large increases in efficiency. Secondly, imposition of a mathematical 

description on the model may involve gross oversimplifications.
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An alternative approach which has had much wider application in 

other disciplines is through the use of the computer model. Such models 
are well known in Operations Research and Statistics I fur example, Monte 
Carlo modelling methods). This approach seems to be the logical line of 
development for the applied sciences. The physical situation is specified 
in terms of a number of abstract constructions. Each of these models must 
be simple enough to permit its behavior to be described mathematically.
The computer is then used to study the interplay of the system of models.

2. The Application of Computer Models in Materials Selection

Materials science is an applied science, which exists because of 
the need for improved materials. Included within materials science is the 
basic study of materials, together with the application of the resulting 
basic knowledge to technology. Therefore, the science possesses an 
inherent dualism which is not found within the "pure" scientific disciplines 
It must seek to develop an understanding of materials, and at the same time 
must apply this understanding in order to advance technology. This is the 
strength and the weakness of the science--whereas there are divisions 
between "Physics" and "Applied Physics", "Chemistry" and "Applied Chemistry" 
the materials scientist must constantly look both ways. He must study 
highly simplified problems, and yet be constantly prepared to extend the 
results into realistic (and consequently complex) applications. Herein 

lies the basic need for computer modelling methods.
The dual nature of materials science is reflected in two over­

lapping areas of application of computer models. In one area, a set of 
materials problems may involve an array of "sub-problems" which can be



www.manaraa.com

simplified and studied on a basic level. Casting solidification offers an 

example of such a set. Many "casting problems" can be delineated, all of 

which involve:
a. Nucléation of solid phases from liquid

b. Growth of the solid phase as crystals 
develop into the liquid

c. Diffusive transport of heat and parti­
tioned solute from the growing surface 
through the liquid

d. Fluid flow,
among other processes. Each of these subdivisions has formed a specialized 

field of study, so that the understanding of casting solidification requires 

that the existing knowledge of the parts must be combined to forecast the 

behavior of the whole. The second area of application is within the study 

of a single complex phenomenon. Examples of this second area are the pre­

diction of the advance of a phase interface through a statistical atomic 

attachment process^ or the study of crystal growth. The major feature 

which distinguishes the two areas is the type of simplification which is 

made. In the first area, all the significant processes must be included 

in some way. The basis for the approach is the simulation of some real 

situation of technological significance, using basic knowledge. Approxima­

tions are permissible, but simplification (in the sense that an imaginary 

simple process is studied) is not permissible. The second area, on the 

contrary, permits complete choice of variables. The most desirable model 

is that for the most simple case which still retains the essence of the 

basic phenomenon which is being studied.
In this dissertation, an attempt has been made to illustrate both 

of the areas of application. Examples of the two types have been selected
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and studied by using computer models. The strengths and weaknesses of the 
computer model method can be seen in these examples. The first area is 
exemplified by the model of casting solidification, applied specifically to 
the freezing of cast iron. In this problem, fluid flow was neglected 
(because of the formation of a network of needle-like primary crystals at 
an early stage, which eliminates macroscopic fluid flow in small sectioned 
castings). On the other hand, several other processes besides nucléation 
and growth had to be included. The casting model was able to duplicate 
experimental results and at the same time enhance the understanding of the 
solidification process in castings. The interplay between theory and 
experiment in this way is peculiar to the model approach. It is as if the 
model is able to reveal the experimental results which would be obtained 
from a range of imaginary materials, each one faithfully following the 
dictates of the imposed model. The delicate "tinkering" process by which 
the model is altered by progressively smaller amounts until coincidence 
with nature has been achieved is rewarded by a deep insight into the system 

being modelled.
The second area (use of models in basic studies) was exemplified 

by the study of dendrite growth. The concept of dendritic solidification 
was stripped to its most simple form, a dendrite needle of isotropic 
material growing into a pure liquid at constant bath undercooling. The 
thermal conductivity of the crystal was taken to be zero, and there was 
assumed to be no fluid flow. The resulting problem is believed to be the 
simplest crystallization process which can still be termed dendritic. The 
model study threw a great deal of light on the "Maximum Velocity Principle” 
of analytic studies and again gave that insight which is peculiar to the
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model-building approach. The application of the model to special forms of 

dendrite such as spherulites and arrays of dendrites has also been 

illustrated. Of course, when realistic dendrites are simulated, the two 

areas which have been distinguished would begin to merge. The addition of 

the many "sub-processes" involved in the development of real dendrites 

merely involves their incorporation within an interactive assembly such as 

that developed for the casting simulation.
It might be asked whether Materials Scientists are competent to 

develop computer models. The answer is that they are the only people able 

to develop models relevant to their own area. Primarily, the reason for 

this is the dependence of the model upon physical understanding. The model 

requires an almost intuitive feeling for those processes which are 

important and those which are not. Furthermore, the existence of a unique 

solution to a model problem is hard to prove mathematically. At present, 

its existence must be assumed on the basis of Tenowledge of the tangible 

physical problem, known to give unique physical behavior under given sets 

of conditions.
Before embarking upon the main work of the dissertation, a simple 

example of the computer model approach will be described. The example 

was chosen because it formed the basis for the kinetic studies which will 

be described later. It is therefore outline in some detail in the 

next chapter.
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CHAPTER 2: A COMPARISON OF THE MODEL AND ANALYTIC APPROACHES

1. Model Treatment of Diffusive Flow

Many of the phenomena which are studied in Materials Science 

involve diffusive transport of heat or matter. Generally, the diffusion 

problem is complicated by a number of additional processes which are going 

on simultaneously. As a consequence, the majority of these situations, 

particularly those of technological importance, do not lend themselves to 

treatment by conventional mathematical methods. This is an ideal area for 

the application of computer modelling techniques. The separate subsystems 

(which are well understood) are combined through the computer model into 

the macroscopic system which represents the real situation.
In many applications, it is not convenient to use the complete 

mathematical treatment of diffusion. The diffusion process itself, can be 

broken down into three separate subsystems, which represent the bulk of 

the diffusive medium and the two boundaries. Because many diffusion problems 

can be solved exactly by analytical methods, this presents a good position 

from which to approach computer modelling methods. The computer models 

and their results can be compared at each stage with analytical results. 

However, the additional power of the model approach will be demonstrated 

in the later sections of the dissertation when more complex and realistic

problems are studied.
Consider, first, a simple development of the basic equat.jns 

governing diffusive transport. Pick's second law for one-dimensional heat 

flow through a conductor can be readily derived by taking a model consisting 

of a thin slice of the conductor parallel to the isotherms and balancing



www.manaraa.com

10

incoming heat with the heat content change and the outflow of heat, 

Clearly:
6t(JI - JO) = S.ôT.ôx ,

where
JI = flux flowing in through the inner surface 

JO = flux flowing out through the outer surface 

S = specific heat of the conductor 

ÔT = temperature change of the compartment 

Ô t = time increment 

6x = width of the slice.

Writing the flux as:
J = - k Tx (2 . 1)

where
k = thermal conductivity and

T = dT x dx

Hence,
6t{(-kTx + k (Tx + ôx Txx)) = S.ÔT. 6x

ÔT = iS T6t S xx

Taking this to the limit where
fit dt

Tt ■ I  TXX (2.2)

Now, imagine that we are developing a computer model. In this 

particular case, a computer model can be derived immediately using finite 

difference methods. However, it is convenient to develop the model on a
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more general basis. Suppose we conceive as our model a thin compartment 

which, as in the previous development, is constructed parallel to the 

isotherms. Let us choose the edges of our compartment so that no heat 

flows through the closures. That is, the compartment is bounded on two 

faces by isotherms and on the other faces by an orthogonal projection to 

the isotherms. Space can be subdivided into a set of such compartments, 

as shown in Figure 1. As before,

6t(JI - JO) = S.ôT.ôx 

It is convenient to generalize this expression, i.e.,

6t(AI JI - AO JO) = S.ôV.ôt , (2.3)

where
AI = inner surface area of the compartment

AO = outer surface area of the compartment

ÔV = compartment volume.
JI and JO follow from equation 2.1. However, since the model will not be 

taken to the limit, 6t -» 0, is not known, and the equation cannot be 

solved.
At this stage, differences between the computer model and the 

analytical model emerge. Instead of considering the diffusion field in 

general, the computer program will approach each individual finite element 

as an entity in space and time. There are many consequences of this which 

will emerge in the later parts of this work. At this stage, it should be 

noted that T̂. at any particular point is varying during the time increment 

fit which is considered in a calculation. Furthermore, because a compartment
is considered individually, the variables are unspecified, since they

depend upon the adjacent compartments on the two sides.
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The time dependence of will be removed from the calculation by
taking the mean gradient during the time increment. This is equivalent to 
taking the first term of a series expansion of the integral over 6t. As 
Ôt becomes very small, the mean value becomes exact. The meaning of "very 
small" emerges during subsequent use of the model calculation.

Suppose that we know the initial condition of the diffusion field 
and hence specify the temperature gradients at the inner and outer boundar­
ies of the compartment. The mean temperature gradients during the time 
increment can be expressed in terms of the temperature change occurring 
within the compartment and its two neighbors. An appropriate means by 
which this can be done is to assume a linear change of gradient with dis­
tance over the dimensions of a compartment. Therefore, in the conservation
equation for a compartment, there are three unknowns ; the temperature change 
of the outer neighbor, that of the compartment itself, and that of its 
inner neighbor.

We are now in a position to consider the model for a boundary 
compartment (Figure 1). Here, there are only two unknowns because one 
unknown temperature has been replaced by a boundary condition. Suppose we 
take a boundary condition of the second kind, that the rate of heat removal 
is constant. Then the amount of heat removed is

Q = Qt ÔT.A , (2.4)

where
Q = heat removed, and
Q = rate of heat removal.

Putting this result into equation (2.3), it then becomes :

6t(AI JI - AO Qt) = SÔV ÔT , (2.5)
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placing the boundary on the outer surface of the series of compartments.

This expression still cannot be solved because JI has not yet been defined.

Suppose for the sake of simplicity that both boundary conditions 

are of the second kind. The task remaining is to combine the model for 

the boundary conditions, with a model for the diffusion field based upon 

a number of adjacent compartments of small but finite thickness. This is 

essentially one of solving a series of N equations to find N unknowns 
(the temperature changes for each compartment). Since we can derive an 

equation for each, the system has a unique solution which is- as precise as 

the assumptions allow. These assumptions (described earlier) are :

(1) That the gradients can be assumed constant during 
a time increment (at the mean value for a time 
increment)

(2) That the gradient changes linearly with distance 
over the width of a compartment.

Starting at one boundary, we can define the temperature change of 

the first (or Nth) compartment in terms of its neighbor.

J = -k T^(mean) (2.6)
ÔT2 - 0T1

T (mean) = T (initial) H------------ . (2.7)
% x 2Ax

T^(initial) is known from the conditions at the beginning of the time 

increment. The symbols can be explained most readily by means of Figure 1.

6T_ = temperature change at the center of the compartment 
being considered, at the end of the time increment;

6T1 = temperature change at the center of the adjacent
inner compartment at the end of the time increment; and

Ax = separation distance.

Then, combining (2.6) and (2.7),
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ÔT - ôT
JI = -k (T (initial) H — ---  ) • (2.8)x 2Ax

From (2.5) and (2.8)

jk AI
6T2 - ÔT^

ôt | k AI {-T^ (initial) --- ) - A0 Q, S ÔV 6T2 = 0 .

Rearranging, we have : 

-ÔT 'k AI ôt + Sôvl + ôT. Î —  ôtl = T (initial) k AI ôt + AO Q ôt f 1 \ 2Ax | x t2Ax
(2.9)

Or, rewriting:

ôT2 = ! Ti + y > (2.10)*

where

a = KAI ôt , (2.U)*
2Ax

g = k AI ôt + SAV = a + SAV , (2.12)*
P 2Ax

and
y = jk AI Tx (initial) + AO ôt/p . (2.13)*

These constants (a, g, and y) can be evaluated numerically and their values 

stored in the computer memory.
The model for a central compartment can be considered in pre­

cisely the same manner. The conservation equation is:

* Equations for the compartment at the outer boundary.
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Ôt (AI JI - AO JO) = SÔV 6T2 (equation 2.3)

and (analogously to equation 2.8)

JO = -k Tx(0) +
ÔT3 - ôT2 (2.14)
2Ax(0)

JI = -k Tx(I) +
ÔT2 - 6t1 (2.15)2Ax(I)

where T (0) is the initial temperature gradient at the outer surface of

the compartment, and 1^(1) is the initial temperature gradient at the 

inner surface. Similarly, Ax(0) and Ax(I) are the distances between the 

centers of the three compartments; the (I) and (0) indicating the side 

nearest the inner and outer boundary of the plate, respectively. The 

temperature changes, 0?%, ôT̂ , and ÔT^ are the temperature changes at the 

centers of the three compartments at the end of the time increment, with 

the highest number indicating the compartment furthest away from the inner 

surface of the plate.

boundary (equations 2.10-2.13), we have already derived a relation between 

the temperature change in the adjacent compartment and that in the boundary 

compartment (equation 2.10). This relationship can be used to eliminate

new equation relating two temperature changes. This can be used in a 

conservation relationship for the next inner compartment. The process can 

be repeated until the inner boundary has been reached. In general:

x

Consider now the set of compartments, starting with the outer

ÔTg from equation (2.14) and express it in terms of ÔT̂ . We thus have a

(2.16)
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where

- (2-17)

I - 1B =( t t - - -j±L_ . A o W  6t + S6V , (2.18)
: \ j 2Axj+l

Yi = {(T^ 0> + ̂
AO - T (I) M S  . k ̂  . (2.19)

Each of these constants is evaluated and stored for all the 

compartments successively. At the inner boundary, there are only two 

unknown temperature changes and two equations. The first of the equations 

from the derivation for a general central compartment:

Oto6T0 = —  ÔT. + 6 (equation 2.16) ,
2 32 1 2

where Ô , and have already been calculated. From the conservation

condition (as for the first compartment)

ôt

Rearranging:

ÔT2 - ÔT1'
kA(M V 0)+ ' A IQf - SÔV 6T1 = 0

ÔT (H AQ.JSt) = ÔT (SÔV + k 6t) - k ôt AO T (0) 4- AI Q ' . (2.20)

This is the second equation that we need and from it ôT^ can be evaluated. 

By successive substitutions using the values of ou, 3̂ , and y^, all the 

temperature changes can be calculated, in turn, and hence the temperature 

profile at the end of the time interval can be determined.
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The results for the analytical and model treatments will now be 

compared using a simple example. The boundary value problem can be posed

as :

^  Tt = i  Txx (T = T(x,t))

B.C. T (0,t) = -x

I.C. T(x,0) = T

The solution to this problem can be readily obtained, but it is quite
(2 )complex. Based on Carslaw and Jaeger , the results can be written as:

/■v t.'.l/2 n-œ 
T(x,t) = 2 Qt T.

n=0
ierfc (2n+1)L-x + erfc i2n±lU+x 

2(Kt) 2(Kt) ^

ierfc | ^ i /2 + erfc 2(n+1feS
(2.21)

2(Kt) 2(Kt)1/2
+ T0 *

where K is the thermal diffusivity, | , and ierfc is the integral error 

function. Because this equation is rather cumbersome, an equation was 

derived for the simple case where:

Qt = Qt' -

Fourier methods lead to:

2 Q 2 2
T(x,t) = ^  (cos ™x) exp(- | ̂ )  " ^  " x) + T0 '

(odd values only) (2.22)

The computer model can be applied directly to this problem, setting:

AI = AO = 1 for the entire field.
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Thus, the dependence of temperature upon position within the plate and 

time could be calculated by both approaches, allowing a comparison to be 

made between them.
The computer program used for the model calculation is listed in 

Appendix A. The flow of the calculation between the different components 

can be better appreciated by study of the flow chart in Figure 2. This 

shows how the calculation passes from compartment to compartment calculating 

the coefficients a, g, y, for each in turn. Then, after the inner boundary 

condition has been applied in the form of the model for the inner surface, 

the system of equations is solved. There are two parameters controlling 

the calculation, the size of the space increment (the value of N, the num­

ber of compartments into which the plate is subdivided) and the size of 

the time increment. These parameters control the accuracy of the 

calculation.
Table 1 lists the temperatures calculated for the surface of the 

plate by both analytical and computer methods. The temperatures are those 

which would be attained at the hotter surface after the passage of 65 

seconds. Computer calculations were made with various values of the space 

and time parameters. The results for all cases are listed in the table.

The computer drew plots of the time variation of the surface temperature.

It was not possible to resolve the differences between the curves for the 

range of parameters studied. A typical curve is shown in Figure 3. The 

computer also plotted the temperature variation across the plate, for 

various times after the start of flow. These curves are shown in Figure 4. 

For all practical purposes the computer model gave the same result as the 

Fourier method. Furthermore, it can be seen from Table 1 that the trend is
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TABLE 1. COMPUTER MODEL CALCULATION OF HEAT FLOW ACROSS A PLATE

The temperatures are those of one surface of the plate 
after 65 seconds have passed from the time at which the 
initial condition of uniform temperature prevailed.
The results are for different time and space subdivision.

ôt(mean) 6t(init
Calculated
.) j* = 15

Surface Temperature 
30 45 60 loop*

1.10 0.20 196.718 196.746 196.751 196.753 58

1.01 0.15 196.675 196.722 196.726 196.728 64

0.90 0.10 196.694 196.720 196.725 196.727 72

0.76 0.05 196.685 196.712 196.716 196.718 86

Result from Fourier methods - 196.7210 
* j is the number of subdivisions of the plate width

# loop is the number of time increments required for the calculation.
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to exact agreement as the time and space subdivisions are made smaller.
- 2However, since all the results agreed within ± 0.2 x 10 %, the agreement

is already near to the limit of the computer accuracy using single 

precision arithmetic.
The power of the model approach is illustrated by the fact that 

with very little further labor (change of the AREA function), the calcu­

lation could be immediately converted to any one-dimensional system through 

the insertion of appropriate values if AI and AO.
The computer model method used in this simple example can be seen 

to involve two main ideas.
(1) Breakdown of the problem into finite elements of 

space and time. In this example, three different 
models were used to yield N equations with N 
unknowns, for each time increment.

(2) The solution of the equations by a marching procedure.

The first of these ideas is present in all model treatments and 

is the source of the flexibility of model methods. Because there are N 

separate equations, they can be made up of N different models. In this 

particular case, this facility allows interface boundaries to be inserted, 

the diffusivity to be changed, or the shape of the flow path to be varied. 

Other examples which are described later illustrate the treatment of other 

combinations of models. For example, an array of bubbles of various sizes 

interacts with a matrix through vacancy and gas diffusion. In this case, 

there are many different models entering the calculation, rather than the 

three different types (center and two boundaries) which entered the diffu­

sion calculation. This example could equally well have dealt with the 

adsorption of gas on an interface (as in the B.E.T. model of statistical 

thermodynamics for surface adsorption), or the transient embryo distribution
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in a condensation problem. It may be noted that the Fourier transform 

method could be regarded as an allied procedure to those described. The 

model in this case would be one in which a surface in potential space 

could be built up from a finite number of periodic functions. The limita­

tion and strength of this procedure, of course, is that the functions are 

related mathematically, leaving only a relatively small number of unknowns 

which can be used to specify the problem. This means that the approach is 

far less flexible than are computer models in general, but the equations 

are easier to formulate and solve.
From the second idea springs the whole art and difficulty of 

model methods. It is not generally easy to solve N simultaneous equations 

with sufficient speed (even with a computer) to permit repetition of the 

process over a number of time increments. Fortunately, there are many 

approaches which alleviate this difficulty, and there are some types of 

model which are particularly tractable. One such case has been described 

in which the simultaneous equations can be solved by a marching procedure. 

Many models can be cast in this form, which gives an exact solution to the 

series of equations. In most of the examples in this dissertation, the 

problem has been cast in this form. When it is not possible to transform 

the problem in this way, resort must be made to the many computer methods 

which have been developed, which rely upon iterative or "trial and error" 

methods. Many of these are surprisingly effective, involving, for example, 

prediction of trends and subsequent correction of the prediction, i.e., "Pre 

dictor-Corrector" methods. These methods are illustrated in this disserta­

tion in the complex situation of the swelling of nuclear fuel, and more 

simply in the treatment of the boundary conditions in the study of 

dendrite growth.
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SECTION B

A COMPUTER SIMULATION OF THE FREEZING 
OF A CYLINDRICAL CAST IRON BAR



www.manaraa.com

27

CHAPTER III: CONCEPTUAL BASIS FOR THE MODEL

1. The Freezing of Cast Iron

Cast iron was chosen as an example of a material of great techno­

logical importance, which made a suitable subject for a model study. The 

objectives were to combine the results of basic studies within a model, in 

order to predict the behavior of the whole casting.

When this model was first conceived, a large body of experimental 

data had been accumulated in a study of graphite formation in grey cast 
i r o n . 5) Tjie separate processes which together determined the proper­

ties and structure of the material had been studied in controlled experiments, 

designed to clarify the manner in which the microstructure of the material 

developed. In particular, the search for an understanding of the processes 

controlling the graphite structure formed a prime motive for the original 

work. However, although the nucléation and growth models for the material 

were quite well developed, it was not possible to relate them to the system 

represented by the complete casting in anything but a very qualitative 

manner. Before describing the models for the processes, the phenomena 

associated with the freezing of cast iron will be described.

Many descriptions of the freezing of cast iron have been pub­

lished. ̂ ^  The alloys of interest are all of eutectic or hypoeutectic 

composition. The equilibrium diagram as it applies to eutectic solidifica­

tion is shown in Figure 5. A description of solidification can be based 

upon Figures 6 and 7 (a,b, and c) taken from Reference 3. Figure 6 shows 

sections of bars which were poured from liquid metal at the same time but 

quenched successively during solidification. The dark areas (ignoring cracks)
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(a) The start of eutectic solidification

(b) During solidification

(c) Solidification almost complete
FIGURE 6. THE APPEARANCE OF BARS QUENCHED DURING SOLIDIFICATION 

(from Ref. 3)
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(a) Austenite dendrites form

(b) Eutectic cells grow from nuclei

(c) Interlocked eutectic cells after solidification is complete. 
FIGURE 7. THE PROGRESS OF SOLIDIFICATION (Schematic)
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were solid at the time of the quench and consist of graphite-austenite 

eutectic. The illustrations show that eutectic cells were nucleated 

throughout the melt and grew in a radial fashion until all the liquid had 

frozen and the cells were in contact. Figure 7 shows the process in a 

schematic manner; primary austenite dendrites are shown growing into the 

liquid metal both before and during eutectic solidification. The study 

of cast iron solidification in a general way, such as by means of 

quenching experiments, generates a vivid impression of the interplay of 

growing surface area, growth rate, and cell-cell contact controlling the 

freezing temperature of the melt at any instant. In order to simulate 

the processes in a calculation, each of these must be specified in a 

rigorous manner.
The solidification system can be subdivided into a number of 

separate processes as follows:
a. Heat flow - latent heat released by the separation of 

solid throughout the casting must flow out through 
the free surface.

b. Nucléation - centers of eutectic growth originate 
throughout the casting. The nucléation frequency 
is not constant, depending, for example, on the 
temperature of the liquid.

c. Growth - eutectic solidification takes place on the
nuclei, liberating latent heat. The growth rate is 
not constant.

d. Primary phase solidification - the liquid composition
varies as the temperature of the casting changes, in
accordance with the equilibrium diagram. The compo­
sition change is accomplished by the formation of 
primary phase dendrites of austenite. The formation 
and dissolution of these crystals as the casting tem­
perature changes liberates or absorbs latent heat.

e. Mechanical effects - the growing eutectic cells
touch each other and the casting surface, and the
free surface in contact with liquid is reduced.
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These subsystems can be described by models. The models can then be com­

bined to give a description of the whole casting.
The treatment which has been developed can be approached from the 

viewpoint of the model treatment for heat flow described in the previous 

chapter. Considering the casting to be a long rcund bar, the heat flow is 

one dimensional. Subdividing it into compartments (radial annuli), each 

subdivision can have its own thermal properties and the conservation equa­

tion can include a term for heat liberation resulting from any solidification 

taking place within it. Within each subdivision, the nucléation and growth 

rates can be assumed to be sensibly uniform for small subdivisions. Again, 

the meaning of "small" follows from trial calculations with different 

subdivisions (as in Table 1), which show the effect of changing the size of 

the calculation parameters. Clearly, at the limit when the size is 
infinitesimal, the approximation disappears. The effect of the approxima­

tion is demonstrated by the trial calculations.
Since the nucléation and growth rates are dependent upon the 

temperature, the problem becomes one of determining the temperature of 
each subvolume throughout the casting for the whole period of solidification, 

and integrating the growth of the solid throughout the casting and over the 

whole time period. The total rate of heat generation in the casting is 

the sum of latent heat liberated in each small subdivision of the material 

together with the heat absorbed or liberated as a result of the temperature 

changes. The latent heat liberation as a result of eutectic growth is 

evaluated by multiplying the surface area growing into the liquid by its 

rate of advance (thus giving the rate of formation of eutectic solid), 

multiplied by a latent heat constant. The heat content change derives from
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the product of the mean specific heat constant for the mixture of solid and 

liquid and the rate of change of temperature. The processes determining 

the temperature of any volume increment can be summarized:

<12 = r  dt Ç (SA) L M  + |Cp1 + (FVS) (Cps - CPl)| |ï ÔV , (3.1)

where 4^ is the rate of heat removal from the whole metal mass, L is the dt
number of calories liberated during the formation of unit volume of the 

solid, is the rate of growth of cells of radius IL, |ï is the rate of 

change of temperature, Cps is the specific heat per unit volume of solid,

Cp^ is the specific heat per unit volume of liquid, SA is the surface area 

of solid eutectic in contact with the liquid, FVS is the fraction of the 

casting volume which is solid, and 6V is a small volume of the casting which 

can for some purposes be considered to be isothermal. Summation is carried 

out for all the subvolumes of the casting.
This equation highlights details of the solidification process

which must be understood prior to calculation of the temperature-time

relation for each part of the casting. Separating, first, the less

important features : the physical constants are available in the literature,

although, because of the various types and compositions of cast iron, they

are to some extent unsatisfactory; FVS follows from prior calculation of

latent heat liberation; 4^ has been assumed to be constant in this work,dt
but it would of course be replaced by a function appropriate to each par­

ticular form of mold; i.e., each specific freezing situation. The remain­

ing terms are then brought into prominence ; SA is a complicated variable 

relating to the nucléation rate of the eutectic cells and their growth, 

and the impingement of the cells upon each other and the mold wall;
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is an expression for growth rate, which is readily available from both 

theoretical study and from controlled experiments.

2. Treatment of Heat Flow in the Casting

The treatment of diffusive flow which has been described in 

Chapter II formed the basis for the model of the casting. Because the 

nucléation and growth processes were less sensitive to temperature changes 

than the thermal diffusion processes, it was possible to assume that the 

nucléation and growth rates were constant throughout a time increment, 

and within each volume subdivision. Furthermore, it proved to be reason­

able to assume also that the surface area of eutectic growing into the 

liquid was constant within a space and time subdivision. Hence, the 

latent heat liberation was calculated from the growth rate and surface area 

of solid for each subvolume. This quantity was then included in the con­

servation equations. Furthermore, appropriate values of S and k were 

derived from the fraction of the volume solid.
Equations were developed in essentially the same manner as those 

in Chapter II. Three differences exist between the treatments. First, 

the width of the compartments varied across the cylinder. The spacing was 

selected to give equal metal volumes within each annulus. Secondly, in 

the program shown in Figure 2 and listed in Appendix I, the initial tem­

perature gradients (T^(initial)) were calculated by fitting a quadratic 

expression between each set of three temperature points, and taking the 

differential. In the present instance, this was not considered to be 

necessary, and a simple linear approximation was made. (This is the 

approximation generally made in finite difference arithmetic). Finally
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the areas of the interfaces between compartments were previously calculated 

by a separate computer subprogram. This was done for generality; in the 

present instance the areas were readily calculable and were included with­

in the main program. The development of the equations was similar to the 

one described in Chapter II. It has therefore been described in Appendix B .

3. Nucléation Processes

There is a considerable literature relating to the nucléation of

cast iron. The salient features can be fitted with the following

scheme. Nucléation of eutectic depends upon the initiation of the graphite

phase. The embryos for nucléation form an unstable population, being

generated by metal treatments such as innoculation (solid additions made to

the melt) with impure ferro-silicon or graphite or by initial freezing

and subsequent remelting of the graphite eutectic to liberate freshly
(9 )formed particles of graphite. The number of embryos in the liquid

metal is continually decreasing, the rate at which they are being destroyed 

depending upon the holding temperature and somewhat on the composition of 

the liquid metal.Because of the wide undercooling range generally 

encountered for this material plus the fact that the process is, in no 

sense, an equilibrium situation; i.e., embryos used up are not replaceable, 

the nucléation process can be approximated to a time-independent model, in 

which all available embryos which can become nuclei with appreciable proba­

bility within the undercooling range, are assumed to grow. The number of 

nuclei which grow can be measured by counting the number of eutectic cells 

lying on the plane surface of a microspecimen taken from the ingot. Some 

experimental relationships between nucléation and undercooling taken from
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References 3 and 6 are listed in Table 2. Increased undercooling despite 

increased nucléation had been achieved by modifying cell growth rate via 

the means of sulphur additions. Nucléation data have been recalculated 

to estimate the number of cells/cc from the quoted cells/in. The data 

can be approximated to an equation of form:

N = A.AT2 , (3.2)

where A is independent of AT and varies between 0.91 and 7.12. The 
relationships are shown graphically in Figures 8 and 9. Commercial cast 

irons probably obey similar nucléation laws, where A might attain values 

as high as 300. If this simple relationship holds generally, it means that 

one measurement of nucléation and undercooling enables A to be calculated.

Differentiating, we find that :

dN = 2 A AT dT . (3.3)

Alternatively, for small but not infinitesimal increments of AT:

6N = A (2 AT ÔT + ÔT2) , (3.4)

where ÔT is the small but finite change in AT which occurs in a time 

interval.
Physically, this represents a system in which the embryo popula­

tion contains a number of particles of a size capable of growing at each 

level of AT, the increase in the number capable of growing at each level 

being directly proportional to the undercooling.
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TABLE 2. RELATION BETWEEN THE NUMBER OF NUCLEI AND 
THE UNDERCOOLING

The number of nuclei was measured from the 
number of eutectic cells in the final casting 
and the undercooling from the difference 
between the minimum eutectic arrest tempera­
ture and the equilibrium freezing temperature.

Metal
Treatment

Bar
Diameterf Cooling Rate*

Number of 
Nuclei# 1 Undercooling

Low Sulphur 0.6 311 510 29.5
Content 0.875 148 615 21

1.2 70 202 11.5
1.6 48.5 214 9.5

High Sulphur 0.6 266 14,190 40
Content 0.875 168 5,780 27.5

1.2 77 2,800 22
1.6 50.3 1,400 13

Medium Sulphur 0.6 311 2,640 33
Content 0.875 185 1,890 23

1.2 77 875 17.5
1.6 43.4 649 12.5

* Cooling rates were taken as the slop of the cooling curve at 
1158°C, in degrees C second-1.

#  The number of nuclei was taken as the number of eutectic cells cm 

+ Bar diameters are expressed in inches.

-3
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4. Eutectic Solidification

The growth process is very complex, because a range of growth 

regimes are possible (for example, the formation of fine as opposed to 

coarse graphite flake structures), and the graphite eutectic may occur in 

a variety of growth habits (for example, flake or spheroidal forms). 

Furthermore, the alloys which are classified as commercial cast irons are 

multicomponent, containing not only graphite and iron, but silicon, 

manganese, phosphorus, and sulphur to name the more common constituents.

Flake graphite eutectic crystallization has been studied by 

Tiller. Conveniently subdividing the total driving force for the

eutectic reaction into the undercooling required to overcome the separate 

limiting processes, he considered the following factors.

1. For two phases to grow cooperatively in a side-by-side 

fashion, the constituent rejected by one phase must diffuse and be 

incorporated into the second phase. To drive this process, a concentra­

tion difference is built up between the two phases. This is effectively 

an undercooling of the two interfaces, the change in liquidus temperature

from the eutectic temperature associated with the concentration difference.
rj.fiThis undercooling is termed ATg .

2. The growth of two phases leads to the incorporation of phase 

boundaries into the solid. This excess free energy lowers the liquidus for 

the eutectic by an amount AT̂ .
3. Tiller^^ considered the overall curvature of the eutectic 

interface. However, the spherical eutectic cells are quite large for the 

greater part of their life, this term will be neglected.
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4. The elements other than iron and carbon are also partitioned 

at the solid-liquid interface. This consumes an additional part of the 

available driving force, termed AT^ .
5. Some driving force is required to cause the atoms to attach 

to the solid. This is the energy consumed by the development of screw 

dislocations and the growth of reentrant corners produced by rotation 

twins. This may again be expressed conveniently as an undercooling,

term ÔT. These ideas can be summarized for the case where the bath is 

isothermal, as

AT( total) = AT^ + ATfi + AT* + ÔT . (3.5)

By an optimization procedure, i.e., finding the maximum velocity 

with respect to the fineness of the eutectic dispersion as the controlling 

variable, the result obtained by Tiller^was :

—  = C (Aa^+ AT )2 . (3.6)dt S B
If the other components of the total undercooling are small, or alternatively 

a constant proportion of the whole, this equation can be approximated to:

= C* /AT(total)] 2 . (3.7)dt L J
However, if (as is probable) the driving force for attachment and that for

the partitioning change disproportionately, the exponent would differ from

2, and this expression might become a severe oversimplification.

5. Mechanical Effects: Cell-Cell and Cell-Mold Wall Interactions

The rate of growth of the eutectic, calculated in accordance with

equation (3.7) permits the increase in radius of the eutectic cells in a
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time increment, 6t, to be calculated, i.e.,

ÔR = iE ôt . (3.8)dt
The volume of solid formed, and hence the amount of latent heat liberated,

follow directly from the knowledge of the increase in radius, and the free

(growing) area of the eutectic cells.
The surface area of the cells, assuming that they do not interact

with each other or with the mold wall, can be calculated from their radii

and the number of cells of each size (the number nucleated in each

particular time increment). Both of these quantities are stored in the

computer memory. The area lost as a result of cell-cell interactions

can be calculated for each subvolume of the casting from the relation

between the fraction of the volume solid (stored in computer memory) and
(12)the area lost. This relation has been derived by Johnson and Mehl and

(13)later using a different approach by Evans
The surface area of the cells, assuming no contact is:

(SA) = | TTENJt/3 , (3.9)

where is the probable number of cells nucleated in the ith intervals

and is their size. The surface area still growing at any time is 

calculated by correcting for the area lost by cell-cell impingement:

(SA)' A, (1 - FVS) (SA) , (3.10)

where (SA)' is the surface area still growing and FVS is the fraction of 

the volume solid.
A second correction must be made to account for the interaction 

between the cells and the mold wall. This correction is of particular 

importance in the annuli near the outer surface of the bar, and it must be
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applied before the correction for cell-cell interactions.
Consider a eutectic cell growing within an annular subdivision. 

Referring to Figure 10, P and Y are the radii of the outer and inner limits 

of the annulus within which the cell is growing. Using the definitions: 
x is the distance of the center of the cell from the center of the cylinder,

D is the radius of the cylinder, R is the radius of the eutectic cell, and

A is the portion of the sphere projecting beyond the limits of the mold

wall. The fraction of the surface area lost, F, is given by

2R
Consider, now, a volume (ÔV) formed by a smaller annulus of unit 

length, radius A, and width ÔA, lying between the radii p and y, i.e..

Let N be the total number of cells in volume V, the total volume of the 

annulus between g and y. Assume that the N cells are uniformly distributed 

within the volume, and that n cells lie between x and p. At the limit 
ÔA -» 0,

6V = 2ttAôA . (3.12)

A=x

J 2nAdA

= TT ̂  (p2 - x2) 

Now x can be related to N, V and n as

(3.13)
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FIGURE 10 SURFACE AREA LOST BY WALL CONTACT
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x = O 2 - IiY)1/2 . (3.14)
TTN

But since

V = TT(p2 - y2) ,

x = (p2 - g (p2 - Y2)] 1/2 . (3.15)

For a given size group (i.e., the same radius), the fraction lost can be 

averaged over the whole subvolume; i.e.,

Mean F = F = [̂  (B_iL2L_Z_2) dn . (3.16)
•’o 2 RM

Substituting for x we find

f = A  j"”  [ r -  d + { p 2 - §  <p2 - §  (p2 - y2)J 1 d”

rR . D + . « . n )
2 R L 3 ' p2 - Y2'J
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CHAPTER IV: COMBINATION OF THE SEPARATE MODELS INTO
A SYSTEM, TRIAL CALCULATIONS

Models have been described for all the main processes which 

operate in the freezing of cast iron with the exception of primary 

austenite precipitation. This is omitted from most descriptions of 

eutectic solidification, and it was considered to be a second order 

process which could well be ignored. Furthermore, because temperature 

gradients are usually small, in the first model, the casting will be 

considered to be isothermal. This will highlight the assembly of the 

system, and illustrate the manner in which a model can be developed as 

further components of the system are added.

1. Simulation of the Freezing of an Isothermal Cylinder

Having derived expressions for ^  and flS in equations (3.4) anddt dt
(3.7), the various processes can now be linked together in a calculation 

of the "cooling curve" for a casting. To provide an introduction to the 

more involved calculations which take temperature gradients into considera­

tion, an isothermal system will be first considered in detail. A volume 

of liquid metal is assumed to develop no temperature gradients, and to 

have a constant rate of heat removal. The flow diagram for a simple 

program is shown in Figure 11.

After preparing computer storage, calculating constants, writing 

headings and so on, the program moves into a section (named COOL) in 

which the calculated amount of heat is taken from the metal, and the 

temperature drop is determined from the metal volume and specific heat.

The temperature is lowered by this amount, and the time is advanced.
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Time intervals appropriate to the casting size and cooling rate are 

calculated during the preliminary stages of the computation (termed 

initiation in the flow diagrams). Hence, the first point in the 

temperature-time relationship (cooling curve) has been obtained. The 
result is written and stored on magnetic tape for plotting. The tempera­

ture is then compared to the eutectic temperature. The cycle is repeated 

until the liquid has cooled below the equilibrium freezing temperature.

The calculation then enters the FREEZE section of the calculation, after 

changing various constants so that when solidification is complete and 

COOL is reentered, it will simulate cooling of the solid. In this calcu­

lation, the probable number of nuclei starting to grow in the time 

interval 6t is calculated. As derived earlier,

ÔN = A(2 AT ÔT + ÔT2) (equation 3.4) , 

where AT is the temperature difference between the metal temperature and 

equilibrium. ÔT is the fall in temperature which has occurred during the 

previous interval.
The increase in radius of the cells is then calculated :

ÔR = —— ôt , (4.1)dt
where ôt is the time increment of the calculation. The surface area 

of the cells is then calculated from information stored in the computer 

memory as :

SA = — ttZN.R.3 , (4.2)
3 1 1

where is the probable number of cells nucleated in the time interval 

i and R̂  is their radius.
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In this calculation, the ce11-moId interactions will be neglected.

A correction is applied for cell-cell interactions as discussed earlier.

Thus, the area of growing surface can be derived, and therefore, the volume 

of solid formed during the time increment follows simply as the product 

of the growing area with the radius increment, 6R. The sum of the volumes 

of solid formed in each of the previous time increments is also stored in

the computer memory and is increased at each increment of growth.

The radii of all the cell size groups are increased by ÔR, and 

various quantities are calculated such as the mean specific heat, volume 

fraction solid, and so on. Finally, from knowledge of the specific heat, 

latent heat liberated, and heat removed, the new temperature of the liquid 

metal is derived. The calculation cycles through the FREEZE calculation 

until all the volume has become solid. The program then simulates the 

cooling of a solid casting for a short period and then the calculation stops.

2. Freezing of a Nonisotherma1 Cylinder

The simple description of the solidification system can now be 

developed to approximate more closely to reality, by taking account of 

the temperature gradients and the interaction between the growing cells 

and the mold wall.

These processes were treated by subdividing the cylinder into 

a number of annular volumes as was described in Appendix B. When the 

volumes are small, each subvolume of the casting can be treated as being 

isothermal and passed through a series of calculations similar to those 

described above. The flow chart is described in Figure 12. Careful study 

will show the basic similarity between this calculation and the isothermal
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treatment shown in Figure 11. The program was designed to scan each 

subvolume of the cylinder in turn, keeping score of the number and size 

of the cells in each subdivision and evaluating the latent heat liberation. 

After all the subvolumes have been scanned, the program moves into the 

SOLVE section of the calculation. In this routine, the heat flow equations 

are solved. These have been described in Chapter III and in Appendix B.

The calculation cycles through either the COOL or the FREEZE 

routines, and the SOLVE routines, until each of the volume subdivisions 

is solid, and then stops. It may be noted that the function of the COOL 

calculation is now reduced compared to the "isothermal" calculation. The 

cooling of solid or liquid is now automatically treated by the heat flow 

calculation SOLVE so that, in COOL, the program merely sets latent heat 

liberation for the particular subdivision at zero and specifies the 

appropriate thermal conductivity.

3. The Effect of Sulphur on Solidification

Sulphur has many interesting effects upon the structure of cast
(3 )iron. It changes the nucléationN as shown by the typical experimental

results contained in Table 2. Further, at low sulphur contents the 

graphite structure is very fine flake graphite eutectic. At higher levels, 

the structure becomes coarser and typical of most commercial cast irons. 

With still higherlevels, the formation of graphite is suppressed, and iron 

carbide eutectic is formed in its place. At very low sulphur levels, 

achieved by treatment with magnesium or by vacuum melting at better than 

1 0 Torr for long periods, the structure changes from a-direction flakes 

to c-direction spherulites. In previous p a p e r s t h e s e  phenomena had
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been explained as the effect of sulphur adsorbed on the graphite particles 

which are the nuclei in this system. The adsorbed layer was presumed to 

reduce the graphite-liquid iron interfacial surface energy, thus allowing 

particles to grow at reduced undercooling levels. In a similar way, the 

adsorbed layer was supposed to slow down the attachment of carbon atoms 

on the graphite interface. In doing this, the overall growth rate of the 

graphite-austenite eutectic is slowed. Since the interlamellar spacing 

is related to the growth velocity, sulphur would, on this basis, be 

expected to first coarsen the flake structure, and finally, when attachment 

became severely impeded, prevent graphite growth completely. This picture 

is greatly simplified, because many interacting variables effect the 

result. For example, increased nucléation, by increasing surface area of 

eutectic growing into the liquid, would tend to reduce undercooling and 

thus coarsen the graphite structure. On the other hand, by slowing the 

growth rate, sulphur would tend to increase undercooling, and increase the 

driving force available to cause growth.
There are not only structural changes resulting from sulphur 

content changes. The soundness of castings is altered. Regions of iron 

carbide are produced (inverse chill) which reduce the machineability of 

the material. Despite the importance of these effects, it has only been 

possible to discuss the phenomenon in the very qualitative way outlined 

in the opening paragraph of this section.
In contrast to the poor theoretical state of the art, there have 

been a number of experimental studies of the problem, producing cooling 

curves and nucléation data which described the effect of sulphur on the 

freezing of cast iron. Because the author had developed the conceptual
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model for the effect of sulphur on graphite structures, it was of some 

interest to determine whether the experimental results could be explained 

quantitatively by the model.
The published cooling curves summarized in Table 2 were well 

suited for comparison with the computer model which has been described, 

because the cooling curves were obtained from thermocouples placed at 

the centers of 10-in. long bars, cast into dry sand molds (see Figure 13). 

In this situation, for the diameters studied, the results can be considered 

to be those for infinite cylinders. Although the cooling rate changes 

during cooling, the change is believed to be sufficiently small during the 

early part of the freezing arrest to permit the assumption of a constant 

rate of heat removal. The material used in the published work was an 

iron-carbon-silicon alloy of 4.1% carbon equivalent containing 0.14% Mn, 

2.5% Si, and less than 0.1% total of all other elements. This composition 

ensured the absence of iron carbide eutectic at the cooling rates studied.

A series of 16 calculations were performed using the three 

nucléation constants derived earlier and a series of growth constants 

which were chosen to cover the range of freezing temperatures of interest. 

From the results, the maximum and minimum temperatures of the eutectic 

arrest at the center of each "bar" was determined, and hence the response 

of these characteristics to changes in the nucléation and growth constants 

were observed. For these calculations, the growth law:

4^ = BAT^ , (equation 3.7) d t

was assumed (using the cooling rate and bar size for a 1.2-in. bar to 

evaluate B). The results are shown in Figure 14 where AT in each case is 

the temperature difference between the arrest temperature and the 

equilibrium freezing temperature.
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From Figure 14, growth constants were derived which were 

appropriate to the irons of the three sulphur contents. They were 

chosen to yield the same maximum AT as the experimental results for 

the 1.2-in. bar. The constants were:

value of B
low sulphur 34.5 x 10 ^

intermediate sulphur 7.2 x 10

high sulphur 2.5 x 10

The same constants were used to simulate the freezing of 0.6 and 1.2 in. 

bars and the fit between the curves and those experimentally observed was 

poor. This was taken to indicate that the growth rate did not obey a 

square power relation with AT. In fact, the maximum undercooling of the 

1.6-in. bar was overestimated and that for the 0.6-in. bar grossly under­

estimated. The work was taken a stage further and the relationship:

= BAT1*7 , (4.3)dt
was assumed. Again the cooling of 1.6, 1.2, and 0.6 in. bars was modelled, 

but now a reasonable approximation to the cooling of all the bars was 

possible. The undercooling of the large cylinders was still slightly over­

estimated and that for the small bars underestimated suggesting that a 

slightly smaller exponent than 1.7 was required. Figure 15 shows a com­

parison between the cooling curves and those predicted by the computer for 

the 1.2 and 0.6 in. bars of high sulphur cast iron. The growth constant 

had to be altered from 2.5 to 4.5 x 10™^ to yield the correct results when 

using the changed growth law. Discrepancies between the shapes of the 

curves are considered to be important and will be discussed in the 

next chapter.
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CHAPTER V: STUDY OF PRIMARY PHASE SOLIDIFICATION AND
THE REFINEMENT OF THE MODEL

1. Primary Phase Solidification

The influence of primary austenite crystallization on the 

eutectic solidification is generally minimized in descriptions of the 

freezing process. Treating the phenomenon qualitatively, it will be 

readily seen that not only could it account for the major discrepancies 

between theoretical and experimental cooling curves, but more important 

it could have a major influence upon the properties of the casting.

Normally, a casting undergoes a primary arrest at a higher 

temperature than the eutectic temperature. Hence, the primary phase 

is growing in equilibrium with the melt by the time the liquid metal 

has cooled to the eutectic temperature. From this, the first conclusion 

follows: since primary phase solidification liberates latent heat, the

apparent rate of cooling will be slower than expected while the tempera­

ture is falling and y-iron is being precipitated.

After recalescence, the composition does not change along the 

extension of the y-iron liquidus line in a simple way. Eutectic solid 

forms at the composition of the bulk liquid. When the temperature 

rises, austenite dissolves where it is in contact with the liquid, and 

the carbon content of the liquid as changed in accord with the extension 

of the liquidus line. Hence, when there is recalescence there is 

absorption of heat as a result of the dissolution of the primary 

austenite phase.
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We may therefore develop a model for the precipitation and 

solution of primary austenite during the freezing of a casting which 

qualitatively accounts for the observed discrepancies between the experi­

mental and computer drawn cooling curves. Assume that
a. Nucléation of primary phase occurs well before the 

temperature range of interest.
b. There is a fine dispersion of primary phase dendrites so 

that the bulk liquid is maintained at the liquidus level by precipitation 

and dissolution of austenite.
From this assumption it is possible to compute the composition 

of the liquid at any temperature:

where C is the liquid composition, and are the eutectic carbon

content and eutectic temperature, respectively, and T is the liquid 

temperature. The amount of austenite formed in a time increment follows 

from the temperature change:

where 6 is the volume of austenite formed in unit volume of liquid, m is 

the equilibrium solute distribution coefficient, and 6T is the temperature 

change in the time increment ôt. Hence, from the fraction volume solid, 

the actual amount of austenite formed or dissolved can be determined as:

C = C + (T - T )/(slope of the liquidus line) , (5.1)eu eu

(5.2)

Ô' « Vi 6(1.0 - FVSi) (5.3)

where the subscripts i indicate that the calculation is performed

separately for each of the subvolumes.
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The model makes the rather surprising prediction that 

recalescence causes a fragmentation of the primary austenite crystals. 

Because the eutectic cells grow in the casting containing primary 

crystals, the primary dendrites become partly embedded in the eutectic. 

Thus, only the regions of austenite dendrites between the eutectic cells 

are exposed to liquid, and free to dissolve. This prediction was 

examined experimentally. Ingots of cast iron were induction melted in an 

inert atmosphere furnace in which they could be rapidly quenched. The 

ingots weighed 50 gm, and they were contained in alumina crucibles 

supported below a graphite tube connected through a tap to the main water 

supply. The crucibles were mounted inside a graphite susceptor, the size 

of which was adjusted to give a cooling rate of about 150°C/min. The 

temperature was continuously recorded by a platinum/platinum 13L rhodium 
thermocouple mounted inside a 1 mm O.D. sheath at the center of the 

ingots. A cooling curve was drawn for the first ingot. Then, the other 

ingots were melted and cooled under precisely the same conditions but 

the cooling was interrupted at different stages through the freezing 

arrest. The structure at the center of each ingot was studied metallog- 

raphically. Figure 16 shows the structure at the center of an ingot 

quenched during recalescence. It is possible to trace the outline of the 

primary phase dendrites through the eutectic cells. However, at the 

periphery of the cells (indicated by quenched liquid) the dendrites can 

be seen to have dissolved, many of them disappearing completely. This 

phenomenon must have an effect upon many properties of castings. In 

particular, since the primary phase is much stronger in tension than the 

flake graphite eutectic, the fragmentation must cause a weakening of the 

material. This prediction is in agreement with the hitherto unexplained
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FIGURE 16. THE STRUCTURE OF AN INGOT QUENCHED DURING RECALESCENCE

Note partially dissolved dendrites in the quenched 
liquid at the cell boundaries.
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unexplained effects of eutectic nucléation upon the modulus and upon the 

ultimate tensile strength of the material. The changes are in accord 

with a fibre strengthening model, with the length of the fibres being 

reduced by reduced nucléation (increased recalescence).

2. The Computer Model With Primary Phase Solidification Included

The computer model was modified to include primary phase solidi­

fication. The program is listed in Appendix C.
The two variables in the growth law, B (the pre-exponential 

factor) and the exponent were used as "curve fitting" parameters, and used 

to give the best possible agreement between the predicted and actual values 

of undercooling for the 0.6 and 1.6 inch bars of each composition. The 

calculated and actual values of the undercooling levels for all the bar 

sizes are compared in Table 3, where the revised growth law constants are 

also shown. For the medium and low sulphur content irons, the agreement 

between the theoretical and actual cooling curves were quite good. However, 

recalescence was still too rapid, although the peak temperatures were 

achieved at almost the same time in the solidification arrest in both the 

model and the experimental curves. The difference may be due to errors in 

the experiment result; a thermocouple in a cooling bar does not record the 

temperature at a point in space and time, but an average for a small range 

of coordinate values. This results in a "smearing" of the curves when the 

temperature is changing rapidly, and when there is a large temperature 

gradient across the bar. Figures 17 and 18 summarize the theoretical cool­

ing curves plotted by the computer for the low sulphur and medium sulphur 

alloys, respectively. The curves for each of the four bar sizes (Table 3) 

for the same composition are superposed on the same graph. Figure 19
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TABLE 3. CALCULATED AND EXPERIMENTAL VALUES OF UNDERCOOLING

Treatment
Bar Size 
(inches)

Growth Constants Undercooling
Pre-exp. Exponent Model Measured

Low 0.6 C 29.5 29.5
Sulphur 0.875 52 x 10 0.78 20 21

1.2 13.5 11.5
1.6 11 9.5

High 0.6 _5 39.5 40
Sulphur 0.875 42 x 10 0.44 29 27.5

1.2 18 22
1.6 13.5 13

Medium 0.6 _ Ex 33 33
Sulphur 0.875 29 x 10 0.78 24.5 23

1.2 16 17.5
1.6 11.5 12.5
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illustrates the temperature gradients across a typical bar casting, in this 

case the 1.2-in. bar of medium sulphur content alloy. In this graph, the 

cooling curve for the outer section and the curve for the central portion 

are shown on the same axes. For the high sulphur content alloy, the 

agreement between the predicted and actual curves was not so good. Of 

course, the predicted and observed values of undercooling could be brought 

into close agreement. However, the growth constants which gave this result 

caused very large amounts of recalescence, whereas the observed recalescence 

was very sluggish, to a final maximum well below the eutectic equilibrium 

temperature. Expressing this observation more explicitly, the maximum 

temperature of the eutectic arrest was actually much lower than the forecast 

made by the model. For a 1.2-in. bar, the maximum temperature observed was 

1145°C. The simulation for the same casting showed that it recalesced to 

the eutectic equilibrium temperature, 1153°C. The explanation for this 

phenomenon could well lie in the segregation of sulphur during freezing. 

Sulphur has been shown to segregate at the surface of the growing eutectic 

cells. Since it also adsorbs strongly on the graphite flakes, we would 

expect ÔT would increase strongly with the rejection of solute. This is 

brought out by the change in value of the pre-exponent with the change 

from low to medium sulphur content and by the more marked change upon 

increasing the sulphur content still further. The rejection of dissolved 

sulphur would cause a progressive change in the values of the constants in 

the growth law. Hence, a more complicated growth law is needed to provide 

a more precise model for the behavior of high sulphur content cast irons.

The eutectic nucléation law operated quite well. The eutectic 

nucléation was generally underestimated, particularly in the cases where a
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undercooling took place. This resulted from the reduction in volume of 

liquid as a consequence of primary austen^te liberation. Since the number 

of centers initiating growth was based upon the product of the probability 

of a cell forming in unit volume of liquid and the volume of liquid, the 

final nucléation was underestimated when an appreciable fraction of the 

casting had solidified prior to the minimum arrest temperature. This 

error can be neglected, since it was much smaller than the experimental 

error of the original nucléation measurements.
The model was able to show all relevant features of casting 

solidification. Space does not permit a full discussion of all the data 

generated, but a sample of the computer output is given in Appendix D.

This relates to the freezing of an 0.6-in., medium sulphur alloy bar.

The listing shows the time in seconds after the temperature fell below

1170°C, the radius of the outer boundary of the annulus to which the data

refers, the temperature at the center of the annulus, the number of cells

cm-3 in the annulus, the volume of metal within the annulus, the fraction

of the volume already solid as gamma austenite, the fraction solid including 

both austenite and eutectic and the surface area of the growing eutectic 

cells. Any other pertinent data could also be listed, including for example 

the eutectic growth rate and perhaps the predicted graphite dispersion.
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CHAPTER VI: MODEL STUDY OF CASTING SOLIDIFICATION

1. Aims of the Study

In this dissertation, the object is to illustrate the application 

of the computer model, rather than to solve some particular casting problem. 

Therefore, an attempt will be made to illustrate some of the appeal which 

model methods should have in technology, where the systems are too compli­

cated to be studied by conventional methods.
The first impetus towards model methods is given by economic 

considerations. The cost of experimental studies of casting solidification 

is very high. For example, the study of the effect of sulphur on cast iron 

which has formed the experimental basis for much of this work would cost

more than $10,000 to repeat under present conditions. Because of the many

interacting variables, the ability to predict in a meaningful way the 

solidification of castings under slightly different conditions is a valuable 

contribution. A computer model permits such an extension, allowing any 

particular combination of conditions to be simulated for about $35, a marked 

saving in time and money. Even more important, the simulation opens new 

avenues which are not amenable to experimental study in castings. Tempera­

tures can be measured with some ease. However, the extent of solidification 

at various stations across a casting is much more difficult to study. 

Generally, quenching experiments are used in which freezing is stopped by 

rapid cooling. Liquid present at the time of the quench is precipitated as 

a fine iron carbide-austenite mixture, which can be readily distinguished 

from the graphite-austenite eutectic. The casting is then sectioned, and 

the volume of solid at the time of the quench is determined by tedious
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metallographic methods. Primary austenite precipitation is almost 

impossible to study. Except under the most favorable circumstances, 

quench studies are unsuccessful because of the slow rates of quench which 

can be attained in practice when compared to the rapid crystallization of

austenite dendrites. Therefore, the use of a computer model which can

be related to the real casting system through the time variation of some 

accessible property of the casting, such as its temperature, offers both 

economic and scientific advances. The model permits one experimental 

study to be extended throughout a host of practical variables: casting

shape, rate of heat removal, nucléation, and carbon content to name a 

few of the many parameters. It permits the calculation of the progress 

of solidification and therefore the study of many features of the process 

which are not easily studied experimentally.
In the following two sections, studies of casting soundness and 

the graphite structure of cast irons will be used to illustrate these 

comments.

2. The Soundess of Cast Iron

Cast iron suffers very little volume change on freezing. There­

fore, unsoundness would be expected only as a result of two types of 

situation. First, if a casting has a low carbon content and is improperly 

fed, the liberation of primary phase (austenite), which has a lower density 

than the liquid, can cause a net volume change and minor porosity. Secondly, 

and of much greater importance, is the expansion of the mold cavity 

under the pressure of liquid metal. Since the feeding of the casting from 

excess metal in a "header" above the main part of the casting is
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progressively impeded, mold expansion can cause large cavities in the 

casting. This becomes increasingly severe as the mold movement takes 

place at later stages of solidification. Mold movement becomes generally 

more severe with time after casting because the sand mold becomes hotter 

and moisture driven off from the sand near the casting surface accumulates 

as a weak, wet layer just behind the sand-metal interface.

Taking a simple view of the problem, the dispersion of solidifi­

cation across the section of the casting can be considered as an index of 

its tendency to be unsound. When solidification is dispersed (taking 

place uniformly across the section), there is a considerable time lag 

after the metal has been poured before there is a solid shell of metal in 

contact with the mold. This is shown schematically in Figure 20a. By 

contrast, when solidification is progressive (Figure 20b) it takes place 

through the development of a shell at the mold surface which thickens 

progressively. Since the dilation of the mold wall can only take place 

while the metal is free to follow the mold, it ceases when a casting skin 

has formed. Therefore, the most obvious effect of dispersed solidification 

is that the formation of a rigid metal shell around the casting is delayed.

The computer model was used to study the pattern of solidification 

across the bar castings. The effects of eutectic growth rate (caused by 

changed sulphur content) was studied, together with its interaction with 

the degree of eutectic nucléation. Table 4 shows the time taken for the 

outer layers of the 1.6-in. bars of high and low sulphur content iron to 

become completely solid. Two nucléation levels are studied; the low level 

is the nucléation given by the constants in Table 2. The high level employs 

a nucléation constant of 200 in all cases, representing "innoculated" alloy, 

in which a late addition of a nucleating agent had been made just prior to 

casting.
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(a) DISPERSED

(b) PROGRESSIVE

FIGURE 20: DISPERSED AND PROGRESSIVE SOLIDIFICATION
(SCHEMATIC)
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TABLE 4. EFFECT OF NUCLEATION AND SULPHUR CONTENT ON THE TIME FOR THE 
OUTER LAYER OF THE CASTING TO BECOME SOLID

Nucléation Constant
Time to Form a 
Solid Skin (sec) Alloy

0.91 163 Low Sulphur
200 92

7.12 135 High Sulphur
200 100

The results are in accord with the general trend which might be 

expected. When the kinetic factors are large, that is, growth and nucléa­

tion rates are high, eutectic solidification appears to be progressive.

On the other hand, when kinetic factors severely impede solidification, 

eutectic solidification is dispersed. This result is in close agreement 

with experiment. Figures 21 and 22 show the computer results for the high 

sulphur alloy of low and high nucléation respectively. Each line on the 

graphs represents a station across the casting given by the inner and 

outer radii tabulated in Appendix D. With the low nucléation constant 

casting, the lines are bunched together, indicating that solidification is 

more dispersed than for the high nucléation constant casting (Figure 22), 

where the lines are spaced more widely. The same general observation can 

be made for the low sulphur alloy castings. The computer-drawn curves are 

shown in Figures 23 and 24, again for the high and low nucléation constant 

castings, respectively. The results show a close agreement with experiment. 

Figures 25 and 26 show similar curves drawn from the work of Merchant and 

Wallace^). The same trend is apparent, the low nucléation constant cast­

ing having the curves much closer together than the high nucléation constant
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FIGURE 25 MEASURED PROGRESS OF SOLIDIFICATION AT LOW NUCLEATION

(re-drawn from the data of Merchant and Wallace, 1961)
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casting. This agreement occurs despite the wide disparity in casting 

size, suggesting that the effect is a general one. In fact, in research 

lasting for about 2 years, the effect of nucléation constant was deter­

mined to be a reduction in the soundness. This effect was found to be quite 

general. U?, 18,19)
From our review of the soundness phenomenon, this seems to be 

a trifle strange. In the earlier discussion, it was concluded that the 

earlier development of a casting skin should be promoted by less dispersed 

freezing and that this should in turn increase soundness. The computer 

and experimental results seem to conflict with this view. Additional con­

flict is provided by the unpublished work of Oldfield, and the experiments 

of Merchant and Wallace^16\  For the same castings for which Figures 25 

and 26 were produced, they found that a casting skin formed earlier for 

the low nucléation constant alloys. Oldfield showed the same result by 

a "slush casting" method, in which the molten metal is poured from 

partially solid castings.
The apparent conflict can be resolved by again considering the 

effect of primary phase solidification. At an early stage of development, 

eutectic cells are small, separate spheres. Thus, eutectic solidification 

confers no mechanical strength to the casting until solidification is 

well advanced. Such eutectic solid would be flushed in a slush casting 

experiment, and would play no part in preventing mold wall movement. The 

role of primary austenite in linking the eutectic cells has already been 

described (Chapter V). If we consider the effect of austenite solidifica­

tion, we find surprising differences between the castings of high and low 

nucléation. Figures 27 and 28 show the fraction of the outer layer of the
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1.6-in. bar casting which has formed austenite plotted as a function of 

time. Each graph shows the curves for the high and low nucléation bars of 

a single composition. Figure 27 shows the low sulphur alloy, and Figure 28 

the high sulphur. The results show marked differences in the amount of 

primary phase formed with time, showing that the precipitation is more 

pronounced for the poorly nucleated material. It is therefore suggested 

that this is the cause of the difference in soundness. Certainly, the 

result suggests further experiments are needed to clarify this phenomenon.

3. Flake Graphite Structure

The variation in flake graphite structure which is found in 

commercial cast iron has been a source of interest to researchers in the 

area for many years. Fine graphite has long been associated with large 

amounts of undercooling, and this formed the basis for the original nomen­

clature. Fine graphite was termed "undercooled" graphite. Morrogh pointed 

out that the graphite structure might be related to the rate of eutectic 

g r o w t h . T h i s  is in accord with the more recent understanding of

eutectic growth, in which the interlaminar spacing, X, relates directly
(10)(21 22) with the growth velocity: ’

X = j lî-Q  x (constant term) . (6.1)
I (velocity)

The effect of certain elements which are commonly found in cast iron

formed an impediment to this simple view of cast iron solidification.

Sulphur had been found to coarsen the graphite structure, together with

hydrogen.^23’2̂  Titanium, cerium, and magnesium additions refined the
(25)structure. On the basis of cooling curve data, Oldfield showed that
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sulphur and hydrogen slowed the rate of eutectic growth, but the arguments 

which were used were qualitative only. The computer model allows the 

cooling curve data to be interpreted in a quantitative manner.

The model calculation was arranged to plot the variation of X 

with time for low and high sulphur content alloys. The calculation 

underestimated X for the later stages of solidification of the high sulphur 

alloys, as was discussed earlier. This portion of the plot is drawn as 

a dotted line. The result is shown in Figure 29. The curves illustrate 

the effect of sulphur on flake size. The flake separation, X is increased 

by more than an order of magnitude by the addition of sulphur. The 

curves also illustrate the so-called "rosette" structure, in which the 

flake separation is small at the center of the cells, then coarse, and 

fine at the periphery. This phenomenon is shown clearly by the high sulphur- 

content cast-iron model.
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SECTION C

A STUDY OF DENDRITE GROWTH BY MEANS OF A COMPUTER MODEL



www.manaraa.com

86

CHAPTER VII: DENDRITE GROWTH

1. A Description of a Growing Dendrite

Dendrites are a familiar crystal form which can be observed in such

diverse circumstances as metallographic specimens taken from castings, within

plastics, or in snowflakes. A dendrite can be described as an assembly of

branched rods or needles. The crystal can be considered to originate from

a single stem, which forms side-branches, which themselves act as stems from

which further branches arise. It has become conventional to idealize the

crystal shape and consider one single needle to be characteristic of the

whole crystal. The characteristic features of dendrite growth are then seen

to be even more common than a more casual classification of crystalline

morphology would suggest. The same basic growth process is found, for
( 26 )example, in spherulitic growth (as in polymer crystallization )and in 

whisker growth.
The feature common to all these growth situations is that the 

growth of the crystal surface is substantially hindered by the accumulation 

of heat or matter at the freezing interface. Furthermore, the growing 

crystal has developed a needlelike shape which penetrates and leaves behind 

the accumulation of growth products. An analogy can be made with the passage 

of a ship through water. The bow always sees the clear water with a minimal 

thickness of disturbed water at the stem, but an increasing width of dis­

turbed water surrounds the ship as one moves towards the stern. In the same 

way, the tip of a growing dendrite has tightly-wrapped heat and solute fields. 

The fields widen towards the root, and consequently the solute and heat 

gradients are reduced. There is an important flaw in this analogy, which
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must be considered if a deeper insight into the growth process is to be 

obtained. Whereas a ship has a rigid envelope, a growing crystal must be 

considered to have a variable shape, which can change freely to accommodate 

any change in its environment. In fact, a dendrite's shape will be seen 

to be in a constant state of transition during growth.

2. The Study of Dendrite Growth

When a liquid transforms to a solid, latent heat is given off at 

the liquid/solid interface and must be carried away if solidification is to 

continue. If the liquid is multicomponent and the solubility of some of 

the components differs between liquid and solid, diffusion must occur as an 

analogue to heat removal. The solid which forms may have curved surfaces 

and may contain defects and consequently have a melting point which differs 

from that of an annealed crystal with a planar surface. Since solidifica­

tion is a nonequilibrium process, a free energy driving force for atomic 

or molecular attachment is also necessary. All four of these requirements 

(a) heat flow, (b) solute flow, (c) melting point changes due to the forma­

tion of solid with a large surface curvature or defect structure and (d)
(27 )kinetic driving force at the interface must be met simultaneously and 

they may interact. A moving solid/liquid interface and its heat and 

solute field is illustrated in Figure 30.
Each one of the four requirements can be assigned a driving 

force in terms of a temperature difference, since AT = AG/AS, where AG is 

the free energy change for the particular process and AS is the entropy 

change. The sum of these forces must equal the total driving force, which 

is related to the amount of supercooling of the liquid with respect to the
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tzlis melting point of the solution. ̂  ̂ In analytical work, this summation

becomes a coupling equation. The driving forces are indicated relative to

the temperature field ahead of the interface in Figure 31.
Most of our knowledge of dendrite growth has been obtained

(28)experimentally. Dendrites have been studied in transparent systems , 

growing from the vapor phase^ , growing upon the surface of liquid 

metals^30^, and other freezing systems. Because of the basic unity between 

so many crystal forms, there is an urgent need to understand the underlying 

principles. To gain such an understanding, theoretical models of the 

growing dendrite have been constructed. Such models are greatly simplified 

approximations to an observed crystal. In general, a dendrite has been 

assumed to have attained a steady state and to conform to some geometric 

shape such as a parabola of revolution.
(31)One of the earliest treatments was that of Ivantsov . In 

this treatment the model for dendrite growth was chosen to be a single stalk 

of solid in the form of a paraboloid of revolution, with growth controlled 

solely by the transport of heat away from the growing crystal surface.

The crystal was shown to maintain its shape during growth; the axial 

component of growth velocity was uniform over the whole crystal surface.

The growth velocity was calculated as:

V = ̂  , (7.1)

where
V = axial growth velocity 

a = thermal diffusivity
= a constant depending upon bath supercooling and the thermal 
properties of solid and liquid

p = radius of curvature of the dendrite tip.



www.manaraa.com

90

Ivantsov's model for a dendrite is not very realistic because 

it suggests that any tip shape could exist in a given situation, and 

therefore a range of dendrite velocities might be observed. In nature, 

very fine crystals are penalized by surface energy effects. The equilibrium 

melting temperature of a curved surface is reduced (Gibbs-Thompson effect).

where
ÔT = depression of melting temperature due to capillarity

Y = interfacial surface energy between solid and liquid

T = equilibrium melting temperature of the solidm
H = enthalpy of fusion

d = density of the solid, and
R and R are the radii of curvature of the surface in two 

directions at right angles.

Temkin^2  ̂developed a new treatment which included not only the

transport of heat in the liquid but also curvature effects. To enable

comparison with the experiment, he included an attachment law to account

for the driving force required to cause an atom to attach to the surface.

Heat flow in the crystal was also taken into account. By suitable choice
(33)of y (about 80% of the value reported by Turnbull ), he was able to 

calculate the tip radius and growth velocity of that crystal which would 

grow at the fastest rate in a given environment. His calculated growth 

velocities were in close agreement with those which had been determined 

experimentally.
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3. The Need for a Model Study

There are a number of objections to the treatments of Ivantsov, 

Temkin, and others^3^ . The calculations are very complex and it is 

difficult to incorporate many interesting features of dendrite growth such 

as anisotropic attachment processes. Similarly, because of the extreme 

mathematical complexity, it is not possible to study crystals of general 

shape. Furthermore, it has proved impossible to follow the development of 

the crystal shape in a time-dependent manner. The closest approach to a
(35

time-dependent study has been through first-order perturbation analysis.

Model methods employing computers are in principle ideally suited 

to the treatment of this type of problem. The growth processes can be 

broken down into a number of distinct components, each of which can be 

properly treated. Then, after a model has been prepared, it can be 

developed to include additional complexities as desired.
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CHAPTER VIII: A GENERAL TREATMENT OF HEAT TRANSFER BY
NUMERICAL TRANSFORMATION OF COORDINATES

1. The Simulation of Dendrite Growth

Model methods are potentially capable of showing the time- 

dependent growth of dendrites and allow the study of needle arrays, an 

isotropic crystal growth and the inclusion of surface kinetic factors in 

the growth calculation. In this work, an attempt has been made to demon­

strate that a model for dendrite growth is feasible and that it can, in 

fact, perform the above-mentioned tasks. The model has not been fully 

developed ; the computer costs prohibit such a complete work. However, the 

relatively simple study which has been made is believed to contribute a 

great deal to the understanding of dendrite growth and to indicate the 

paths that future studies will take.
The basis for the method was similar to that of the casting 

study. Calculations of surface growth were made for a sequence of time- 

intervals and the full sequence of time intervals modelled the growth in a 

similar manner to the way a movie film takes a pictorial model of a changing 

scene. Within each time-interval, certain assumptions were made concerning 

the change of the parameters. In the first portion of this work, it was 

assumed that the surface positions, and the form of the thermal field, 

remained unchanged during the time pulse. In later calculations, the 

changes were assumed to take place smoothly during the time interval. It 

was clear at the outset that a conventional numerical treatment of the 

problem would be an immense task. Considering only heat flow subject to 

the complicated surface boundary conditions, the heat transfer problem would
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have been very difficult to solve when the thermal field and the crystal 

shape diverged appreciably from a form which could be described by a 

simple mathematical expression. The model of the crystal could not impose 

any shape constraints, so that some other, more tractable, approach was 

sought.

2. One-Dimensional Heat Transfer

The examples of Chapter II, and the subsequent study of casting 

solidification, employed the idea of one-dimensional heat transfer in 

simple situations. The flow problem described in Chapter II was concerned 

with an "infinite" plate. In the context of the problem, this meant that 

the isotherms were parallel to the two surfaces of the plate. Hence, no 

heat flowed out of the sides of the compartments and it was possible to 

write conservation equations for each compartment. The models of Chapter III 

and the subsequent chapters included a treatment of radial heat flow in a 

cylinder. The cylinder was assumed to be "infinitely" long, so that 

again conservation equations could be derived, because no heat was lost 

through the sides or ends of compartments. Clearly, the general requirement 

is that side-closures must be orthogonal to the isotherms. For a model 

calculation, the compartments must be formed by the isotherms (the surfaces 

across which heat flows) and the orthogonal projection to the isotherms 

(the side-closures across which no heat flows). Any heat flow situation 

can be represented by a set of one-dimensional flow models. A single set 

of compartments for a one-dimensional calculation is defined by a grouping 

of orthogonal surfaces. Such a grouping is shown in Figure 32. Within 

each channel produced by the surfaces orthogonal to the isotherms, a set of
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A set of  compartments  
con be set up within 
each o f  these boxes

Figure 32. Subdivision of Space 
Into One-Dimensional 
Flow Channels
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compartments is formed in a similar manner to those formed in the preceding 

chapters. For the complete solution of the three-dimensional heat transfer 

problem, the one-dimensional flow channels must fit together, so that the 

gum of the solutions for the individual channels is the solution for the 

entire field. This technique resembles the conventional approach to these 

problems in which the coordinates are transformed. Such a transformation 

relies upon a comprehensive relationship between temperature and position 

and upon the existence of a tractable mathematical formalism. In the 

model approach, a numerical transformation has been developed which does 

not require a more general relationship between temperature and position.

3. Model Calculation

The model was designed to simulate the most simple growth situa­

tion which could still be termed dendritic. A crystal was imagined to be 

growing from a pure melt (only heat flow involved), with no heat flow down 

the solid crystal and with rotational symmetry.
A flow chart for the calculation is shown in Figure 33. The first 

step in the sequence is the development of the initial conditions. This 

involves the definition of the thermal field and dendrite shape and sub­

division of space into one-dimensional flow channels. Heat flow and 

dendrite growth calculations can now commence. Heat flow for each channel 

is considered in turn; the amount of heat flow which takes place determines 

the surface growth at the base of the channel. When the whole set of 

channels has been treated, the network points no longer represent an ortho­

gonal network of flow-lines and isotherms, but instead we have a series of 

points which define the temperature at the position of the point. The
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OF DENDRITE GROWTH
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positions of the points are now changed in two stages, to provide a new 

orthogonal network ready for a fresh calculation. First, new points which 

lie upon the isotherms are found by interpolation. Secondly, projections 

are made from the dendrite surface, through the isotherms defined by the 

new points, to give a new orthogonal network. At this stage, the crystal 

shape and the thermal field have changed slightly from the initial condition 

and the network is ready for a new calculation (representing an additional 

advance in time). The sequence can be repeated as often as needed, giving 

the time-dependent development of the crystal shape and the thermal field.

4. Initial Conditions

At the start of the calculation, an initial set of points is

required to describe the crystal shape and the initial thermal field. A
f 31 )modification of Ivantsov's result^ was used because of its convenient 

form. Ivantsov showed that an isothermal crystal and the surrounding 

isotherms could be described by a family of confocal paraboloids. The 

focal length of the parabola are fixed conveniently by the temperature 

profile along the crystal axis. The Ivantsov result was modified to fit a 

non-isothermal crystal. The axial temperature profile was based upon the 

correct tip temperature (depressed below the equilibrium melting point 

because of its curvature). This moved the isothermal parabolic surfaces 

closer to the crystal surface than they would have been if the temperature 

profile had been based upon the equilibrium melting temperature as it was 

in the Ivantsov result.
The tip temperature profile follows the El function.
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EKjË)
T(F) - I„+ (Tt - T„) , ( 8 .1 )

where F is the focal length of the isothermal parabolic surface, Fq is 

that of the crystal surface, is the tip temperature, and Too that of the 

liquid bath remote from the crystal surface. The parameter Q which has 

already been mentioned in an earlier section relates to the thermal 

diffusivity of the liquid, a, the crystal tip radius, p, and the growth 
velocity V:

Q = lÊ . (8.2)2a
This is not a convenient relationship, because V is not known. An 

alternative form is:

(Teq - Tœ) Cp^/L = Qexp(O) El(Q) . (8.3)

Equations (8.3) and (8.1) were solved by iterative methods based upon 
Newton's method.(88) ^ set of F values was found, describing the family of

isothermal parabolae.
The positions of the orthogonal lines on the crystal surface was 

set arbitrarily. Two considerations were used to determine the origin of 

these surfaces. The isotherms have their greatest curvature near the 

dendrite tip, so that the one-dimensional approximation requires that the 

heat flow channels are narrow. Farther from the tip, the curvature is less 

and the orthogonal surfaces can be more widely spaced. On the other hand, 

the orthogonals were represented by straight lines (viewing the body of 

revolution in a two-dimensional section) between the isotherms. This 

approximation required that "compartments" formed by orthogonals and iso­

therms had to be wide and thin, that is, with smaller isotherm spacing than
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orthogonal spacing. A ratio which was found convenient was 5:1 for the com­

partment adjacent to the crystal surface. Using this criterion to fix the 

position of the first isotherm relative to the crystal tip and fixing the 

length of crystal to be studied and the number of orthogonals to be used, 

the remaining portions were uniformly spaced along the crystal as follows :

Z(l,k) = 2(1,2) - 6 (k-2)P , (8.4)

where k is the index of the orthogonal (see Figure 35) taking the index 

of the axis as 2,

6 = 5^2(2,2) - 2(1,2)J , (8.5)

(the first of the two indices represents the isotherm. The index 1 

represents the crystal surface, 2 the nearest isotherm, and so on).

In z(1,2) - In 6  ̂ (8.6)
ln(N0 - 2)

where N is the total number of orthogonals. The X ordinates followed o
from the equation for the crystal surface:

-  .  ( z d . i o ) -  ZoX(l,k) = F Fo
1/2

(8  7)

where 2 is the 2 ordinate of the focal point of the crystal, o
The intersections between the orthogonal lines and the isothermal 

parabolae were found by a shooting method, starting from the points just 

found on the crystal surface. The intersection point was calculated for a 

line projected at right angles from the parabola representing the crystal 

surface, with the parabola of known focal length and focal point representing 

the adjacent isotherm. The normal to the isotherm was then found:
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where T2 is the slope of the normal, and ̂  is the slope of the isotherm

at the point of intersection. T2 was taken as a good approximation to the 

gradient of the orthogonal at the correct intersection position, whereas T1 

(the slope of the projection from the crystal) was the gradient of the 

orthogonal at the surface. The difference between the two gradients repre­

sents the curvature of the orthogonal, which is to be represented by a 

straight line. A new projection was therefore taken at the mean angle of 

the two intersections. The tangent, Tta is given by:

The intersection of the new projection and the isotherm was taken as the 

network point. This formed the basis for a projection to the next isotherm, 

and the process was carried out through the whole set of parabolae and for 
each orthogonal.

system, a distance vector R(j,k) was calculated. This was the separation 

of the point on the jth. isotherm and the kth. orthogonal line from the 

point on the same orthogonal and the (j-l)th isotherm. Each network point 

could then be defined in the new coordinate system by a k-index represesenting 

the orthogonal line, and a distance vector R(j,k).

Consider Figure 34 which shows a set of compartments produced by 

the intersection of isothermal surfaces and orthogonal trajectories. The

(T2 - Tl) 
2(1+T1.T2)

T1CT2 - Tl) 
2(1+T1.T2) (8 .9)

Having formed a network of points representing the orthogonal

5. One-Dimensional Flow Channels
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coordinates of the points of intersection of the surfaces are stored in 

the computer memory. Within this set of compartments, all heat flow 

takes place across the isothermal planes. There is no flow through the 

side walls of the compartments since they are orthogonal surfaces. There­

fore, heat conservation in any particular compartment in the set is 

dependent only upon the heat flow through the two isothermal walls.

Terming the intersections of two orthogonal planes an orthogonal line, the 

comers of the compartments have been indexed. That is, a particular 

corner of a compartment would refer to the J*-*1 isothermal plane and the 

orthogonal line. In the present study, a body of rotational symmetry was 

considered, so that only one orthogonal plane is used. This is illustrated 

in Figure 35.
Such a set of compartments has been found inconvenient for calcu­

lation purposes. An equivalent set of boundaries can be constructed around 

each orthogonal trajectory. The boundaries are the surfaces midway between 

adjacent orthogonal surfaces and midway between isothermal surfaces. A 

section through the center of a set of compartments is shown in Figure 36a. 

This figure shows that each network point stored in the computer memory 

lies at the center of a compartment. A curvilinear coordinate R is defined 

as the distance along an orthogonal line from the liquid/solid interface to 

the point in question. Figure 36b illustrates the temperature distribution 

along this R coordinate and the arrangement of three typical compartments ; 

those at the inner and outer boundaries, and the intermediate ones.

Let us evaluate the temperature changes in these compartments as 

in the previous sections, when heat is allowed to flow according to Fourier 

Law for a time interval 6t. We shall use e.g.s. units and the same defini­

tions of the compartments and their physical properties.
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6. Outermost Compartment

The computation is very similar to those already described. Let 

the temperature gradient at the outermost surface (outer boundary of the 

set) be (dT/dR)0 and the gradient at the midpoint between the N and N-l 

isotherms be (dT/dR)̂ .. These gradients are computed by fitting a quadratic 

function through three adjacent points on the temperature profile. For the 

outermost compartment, the three temperatures are those at the N-l, and 

N isotherms, where N is the last isotherm and the far-field bath temperature 

at some remote point which is considered to be at infinity for the purpose 

of calculation. The mean temperature gradient at the inner surface during 

a time pulse is

Let us assume at this stage, (i) that the temperature gradient change at 

the outer boundary is negligible during a time pulse 6t (although it may 

change from one pulse to the next) and (ii) that the change in temperature 

can be taken as a linear function of R over the width of a compartment.

Also make the assumption (except in the surface compartment) that the change 

in central temperature of a compartment is the mean temperature change.

This assumption reduces computations and is a close approximation to reality. 

The mean temperature change of the outer compartment is (3ôT2 + 0T^0/4) 

and the heat balance within the compartment is given by:

dRi + 2Rn

I ^!|0 AO kôT + (36T2 + 6t i) = 0
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aN
6T2 =|̂  6T1 + N (8 10)

This expression is very familiar, having been derived in both the heat 

flow treatments which have been described in the earlier sections. For 

this expression,

AI k6t V S 
“h 2Rg - 4

AI k6t , 3VS 
2 %  ^

(8 11)

and

Yn, =N Bn^  I ao - AI

7. Central Compartments

Using the same nomenclature and assumptions (where appropriate) 

and proceeding in precisely the same way as in the previously described 

heat flow calculations (Chapters II and III), an equation having the same 

form as (8 10) can be derived for each of the central compartments. For 

the ith compartment, the three constants of the equation become:

ai AI
2Ri

= 'AI 
2Ri

ai+l
i+l
2Ri+l

AO / kôt + VS ,
(8- 12)

and

Yi = .dR 0 + A° HI I AI
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8, Surface Compartment

When we have reached a compartment near the surface, we have an 

equation whose constants, a,3» and y, contain information about every 

preceding compartment of the set. This equation (equation 8-10) contains 

only two unknowns, 6 ^  and ÔT̂ . The growth process which occurs at the 

liquid/solid interface is a constraint on &T̂ . Hence, the equation can be 

solved. Because every pair of adjacent temperatures has been related, and 

the constants ex., and Yi stored in the computer memory, the heat flow,

new temperature field, and extent of surface growth can be calculated. The 

sequence of calculation was ended at the compartment next to the one which 

adjoins the surface. Referring to Figure 36, this is the compartment

centered on isotherm 3.
To satisfy the solid/liquid interface boundary conditions, all the

aspects of the growth process must be accounted for. Hence, the calculation

for the surface compartment is more complex than those which have been
described. It was found convenient to satisfy these boundary conditions

using an iterative procedure.
For a given amount of surface growth, the temperature profile 

after a time pulse can be determined. Using the assumption that the change 

in temperature during a time pulse is a linear function of R over short 

distances,
ÔT(R) = KR + C

where K and C are constants and R is measured from the initial liquid/solid 

interface. Taking D = R^ + R^ and 5T^ as the rise in temperature at the 

third isotherm, we find
6T3 = KD + C (8 13)
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Representing the initial temperature profile by a quadratic expression

T - Tg - AR2 + BR , (8.14)

where Tg is the initial surface temperature and A and B are constants, let 

ÔT^ be the change in surface temperature which occurs during the time pulse 

and let g be the growth normal to the surface. Then

Tf = T + 6T(R) , (8 .15)

where T^ is the resulting temperature profile. This can be written

Tf = AR2 + BR + Tg + KR + C

or
Tf = AR2 + (B + K)R + Tg + G . (8.16)

Setting R = g

and

Tf = Ts + 6Tl ,

C - 6ll - ^Ag2 + (B + K)g> . (8.17)

Then from equations (8-13) and (8-17)

6T3 = KD + 6T1 - ĵ Ag2 + (B + K)g> ,

and _
ÔT + Ag + Bg - ST.

K = — 3 i . (8.18)D - g
The temperature gradient at the inner boundary of this compartment is
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The mean gradient during the time pulse is

dT
dR

mean
+ K/2

or
1 dT ’ 
dR/I|X 1 mean

- ÔT + ÔT + Ag + Bg
ill + — I------1----------- (8.19)
dR 2(D - g)

Using this relationship for the mean gradient at the inner surface, we 

obtain the conservation equation
a.

AO • t'' ̂  I +
ÔT3IP4

- 1 + CZ,

2R,

- Al.kôt dT
dR

-ÔT + 6T + Ag + B
2(D - g)

VS6T3 = 0 (8.20)
In this equation, only ÔT̂  is unknown (for an assumed value of g and sub­

ject to certain reservations concerning 6T^). Hence, ÔT̂  can be calculated.

All the information is now available to make a heat conservation 

calculation in the surface compartment. Such a calculation will not yield 

a proper heat balance, in general, since our choice of g is arbitrary.

The calculation can be easily repeated with new values of g in a computer 

iteration until a heat balance is achieved and the inner boundary conditions 

are satisfied.
A simplified flow chart for the entire heat or solute flow calcu­

lation is shown in Figure 37. The iteration procedure to satisfy the inner 

boundary conditions is described in the next section.
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9. Application of the Solid/Liquid Interface Boundary Condition

The boundary conditions at the solid/liquid interface are those 

demanded by the interface reaction (kinetic mechanism), the continuity of 

the heat and solute diffusion fields, the heat conduction in the solid and 

the Gibbs-Thompson effect due to surface curvature. In this study, we are 

considering only heat flow from an isothermal solid surface, although the 

computer program is written to accommodate the other boundary conditions 

if necessary.
For a given amount of surface growth, all the interface boundary 

conditions are fixed. If the surface growth is known, the amount of heat 

or solute carried into the liquid is fixed and, thus, the temperature and 

solute profiles are fixed. The depression of the melting point by the Gibbs- 

Thompson effect is also known since surface curvature can be calculated.

The depression of the melting point due to changing solute concentration 

follows from the value of g and from the equilibrium partition coefficient.

The temperature difference needed for the interface reaction also follows 

from the kinetic relationship between temperature difference and the growth 

velocity. Thus, all of the factors in 6T̂ , the change in surface temperatures, 

are defined.
If an arbitrary value of g is selected, a proper heat balance 

will not be obtained, in general. The amount by which it does not balance 

is called BAL, and an iterative calculation can be used to obtain the value 

of g which gives a balance. A flow chart of the balancing procedure is

shown in Figure 38.
To make the description as simple as possible, the procedure will 

be restricted here to the case of heat flow only. In this case, ÔT^ is zero.
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whereas in a more physically satisfactory treatment the other factors 

mentioned earlier would enter the calculation here. For example, a part 

of ÔT^ would be determined by the interface reaction kinetics and the 

solute effect.
Consider the surface compartment shown in Figure 39. For this

compartment we have
BAL = latent heat liberated - heat flowing out + specific 

heat change.
Assume that the sides of the compartment are built up of planes, rather 

than curved surfaces, as shown in Figure 39. Note that this assumption 

affects the accuracy of the specific heat calculation but that the loss 

in volume on one side is made up by a gain on the other. This assumption 

ensures overall conservation of energy between neighboring sets of 

compartments.
In Figure 39 the various features of the surface compartment are 

illustrated. For computational purposes we shall let AI be the area of the 

crystal surface bounding the compartment, AO be the outer surface area, AC 

be the surface area of the isothermal plane 2 included in the box, g be the 

assumed value of normal surface growth, Vg be the volume of solid formed 

during the time pulse, Qg the amount of heat needed to increase the internal 

energy of the liquid in the compartment, Q be the amount of heat conducted 

away into the liquid, 0T1 be the change in surface temperature and L be 

the heat liberated by a unit volume of liquid upon freezing.

Then our BAL equation becomes
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When the boundary conditions are satisfied, BAL = 0. The terms of this 

equation will now be derived.

(i) Change in Internal Energy of the Liquid

Let the area of a travelling surface located a distance R from 

the solid/liquid interface be

A(R) = MR + N , (8.22)

where we recognize two volumes of differing dimensions so that the 

constants M and N have the values

N = AI

M AC - AI
between the surface and 
isotherm 2 (8.23)

N' = AC

= 2(AO - AC) 
r3

between isotherm 2 and the
outer boundary of the compartment . (8 24)

As before, the temperature profile before and after the heat pulse is 

represented by quadratic expressions. Let T and represent the initial 

and final temperatures respectively at sane position R; i.e.,

T - Tg = AR + BR

Tf - (Tg + C) = AR + (B + K)R ,

where C and K are the constants used in (8-23). Let us write

tf - Ts + 6I1
and
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B + K = B'

Let the distance along R from the interface to the outer boundary be Rq. 

Then

In this expression, the first two integrals ate equal to the products of 

the initial volumes and a mean increase in internal energy. The last integral 

accounts for the intrusion of solid into the liquid and the resulting heat 

needed to raise this volume to the freezing temperature. Substituting 

(8.22) into (8.23-4), we obtain the following expression:

Qs = S < J* 2 A(R)TfdR + f ° A(R)TfdR + j*8 A(R)T^dR - J 2 A(R)TdR + J 0 A(R)TdR

R ?  R n  8S j J* A(R)(Tf-T)dR + J A(R)(Tf-T)dR - J A(R)Tf-Tp)dR (8.25a)

Qs = S J* 2 (MR + N)(KR + C)dR + J ° (M'R + N')(KR + C)dR

(8.25b)

and integrating, we obtain
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"dT"
dRQ mean

(11) Latent Heat Liberation

VCL = L r8 A(R)dR 
o

= L + Ngj . (8* 26)

(ill) Mean Temperature Gradient at the Outer Boundary

dT! 4- K
^ t o  '  '

as given in (8*19).
All the quantities in the equations above are available, and now 

BAL can be calculated. The calculation can now be iterated until repeated 

estimates of the velocity to give BAL = 0 agree within a very small value.

In the case we defined in this paper, the relationship between g 

and BAL is smooth and monotonie. The iteration procedure we choose is a 

modified Newton's Method. Only two iterations were generally needed to 

obtain the correct g within 0.5%.

10. Preparation of a New Orthogonal Network

After each time pulse, a set of temperature changes is defined on 

the existing network points. To continue the process of solidification in 

the next time frame, a new solid/liquid interface and a new heat field must 

be set up. In the model, this is done by first fitting new isotherms to 

the field by means of a quadratic interpolation and then generating a new 

set of orthogonal trajectories. The subroutines entitled MOVER and HUNT 

perform these two operations.
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In MOVER, a quadratic expression is first fitted through the 

surface temperature and the next two temperatures outward. In this way, a 

temperature profile is generated and the position of the first isothermal 

plane can be found. This process is repeated in sequence so that a whole 

new series of isotherms are generated as shown in Figure 40. The last 

quadratic fit is made through a point which is sufficiently remote from the 

solid/liquid interface to be regarded as at infinity. A simplified flow 

diagram for MOVER is shown in Figure 41.
At this point in the calculation, the dendrite surface has 

advanced, the heat pulse generated at the surface has run through the boxes 

out toward the far-field, and a new temperature field has been generated.

To conform to our requirements for a one-dimensional analysis, a new set of 

orthogonal trajectories must be generated. This is the purpose of the 

subroutine HUNT. The routine which will be described here has been developed 

for a "two-dimensional" problem; that is, where the crystal is a body of 

revolution.
The computer had first to find the index of the isotherm nearest 

to the non-isothermal surface by comparing the surface temperature depression 

with the temperature step between the isotherms. Then, the angle of the line 

of steepest descent through the temperature field was found from a selected 

point on the crystal surface. To determine the angle of this line, four 

quantities had to be calculated.

(a) The angle a made by the tangent to the crystal 

surface at the point

(b) The gradient (at the surface) of a curve passing 

through the points of the same k-index on the next
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FIGURE 41. FLOW CHART FOR "MOVER"



www.manaraa.com

121

two isotherms. This gradient made an angle p 

with the X-axis
(c) The temperature gradient along the crystal 

surface at the selected point, T'cc

(d) The temperature gradient at the surface along 

the curve found in (b), T'p .
These quantities were found by differentiating quadratic expressions fitted 

through each set of three points using the appropriate parameters. For the 

temperature curves, for example, the parameters were the isotherm tempera­

tures and a radial distance between the points. Then:

Gradient = cosO. , / I   a sing- 1 / tang -cosg Am I  ̂ cosg Am

T'a

(8.27)

where Am = . This expression is developed in Appendix E.P
The orthogonal network was then developed in a manner similar to 

the method used in preparing the initial network, described in Part 5 of 

this chapter. There was a major difference. Because long-range mathematical 

descriptions of the temperature field cannot be imposed, a short-range 

description had to be found near each point from which a projection was 

desired. Considering the development from a surface point. The gradient 

of the orthogonal line has already been found by the procedure described in 

the previous paragraph. The projection of this line is used to find the 

three network points on the first isotherm which lie about the line. These 

are then used to derive a quadratic expression through the points and the 

intersection of the orthogonal line with the curve is then found by a root 

finding procedure. Hence, the angle made by the orthogonal line with the
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the curve at the point of intersection is derived. This is a first 

approximation to the orthogonal curve; a new projection is then made from 

the surface at the mean angle, and a new intersection point derived. This 

is taken as the new network point, and the projection is continued through 

the whole set of isotherms and repeated for each orthogonal. The flow 

diagram for this calculation is shown in Figure 42.
At this juncture, a new orthogonal network is available for a 

new heat flow calculation, and a new increment of crystal growth can be 

calculated.
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CHAPTER IX: SIMULATION OF ICE AND TIN DENDRITES

1. Comparison With Ivantsov's Results

Ivantsov's calculation has already been mentioned in Chapter VII.

It was possible to simulate his model dendrite by setting the value of sur­

face energy as zero, which eliminated the curvature effect which is incor­

porated within the computer model. The initial conditions are then exactly 

those derived for the thermal field of a dendrite growing (according to 

this model) at steady state. Therefore, the computer calculation for den­

drite growth should yield a calculated growth velocity in close agreement 

with Ivantsov's analytical result. This result is summarized in the 

expression for Q described in Chapters VII and VIII. This may be recast as.

(constant)V = —(tip radius)
However, the Ivantsov dendrite cannot be meaningfully simulated for any long 

period of growth, since it cannot be optimized. The crystal can grow at 

any velocity without any of the penalty incurred in real crystal when at 

high velocities the tip of the crystal becomes very pointed. Therefore, an 

appropriate test for the computer model comprises a check on the velocity at 

the first loop around the calculation, and a few repeat loops to ascertain 

the utility of the routines for rearranging the network. In calculations 

for the ice crystal, the time increment was varied in the range 0.1-1.0 sec, 

a tip radius p of 0.01 cm and a length Zq of 0.50 cm were combined with 

varying network subdivisions in a comparison with the calculated tip 

velocity. The results are shown in Table 5. It was found in practice that
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TABLE 5. AXIAL GROWTH VELOCITIES NEAR THE TIP

K
Velocity x (10"3) for Various 

Dimensions (cm/sec)
Matrix

Index 10 x 11 10 x 21 20 x 21 40 x 41

2 1.424 1.485 1.498 1.523

3 1.466 1.469 1.490 1.515

4 1.525 1.525 1.513 1.520

Theoretical result : 1.536 x o10 cm sec-1

the time increment was not a free variable. It had to be related to the 

network size so that the amount of surface growth never exceeded the distance 

from the surface to the first isotherm. It was therefore set automatically 

by the model to give a growth of one-half (isotherm spacing). The results 

are in close agreement with the theoretical value, the agreement becoming 

better with successive loops through the calculation in most cases. For 

the finest matrix studied, the growth velocity was

V(computer) = 1.523 x 10~4 cm sec"1 (40 x 41 matrix) .

This result can be compared to

-3 -1V(theoretical) = 1.536 x 10 cm sec

It was not possible to meaningfully separate the effects of the individual 

variables, number of isotherms and number of orthogonals. The overall
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relationship is therefore shown schematically in Figure 43. This shows 

the effectiveness of the various matrices on the tip velocity in comparison 

with the theoretical value.
The axial component of surface growth was calculated at a number 

of different stations (values of k) along the crystal. There was very 

good agreement between the results, indicating that the crystal shape was 

being maintained. The results for a crystal simulated by a 40 x 41 matrix 

are shown in Table 5. All of the stations along the crystal were within 

0.5% of the theoretical velocity required to maintain the parabolic shape.

A cross section through the network is shown in Figure 44. This network 

has the orthogonal lines spaced by a slightly different method from that 

described in the last chapter, so that the orthogonal lines are not 

clustered quite as closely around the tip region as in later calculations.

Equally good agreement was obtained when the growth of a tin 

dendrite was simulated. Table 6 lists the axial velocities calculated at 

the stations along the crystal. A tin dendrite was modelled, growing in a 
liquid bath supercooled 5°C below the freezing temperature. The tip of the 

dendrite had a radius of curvature of 2.5 x 10 ^ cm. The physical constants 

for tin used in this and subsequent calculations are listed in Table 7.

It can be seen that again all the velocities calculated are within 0.54 of 

the theoretical value. The tip and theoretical velocities are:

Tip velocity = 6.556 

Theoretical velocity (Ivantsov) = 6.560
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TABLE 6. AXIAL COMPONENT OF VELOCITY OF AN ISOTHERMAL TIN DENDRITE

k V (axial comp.) Z

Theoretical 
Value for 

Axial Velocity

2 6.556 1.51250 x 10"2
3 6.568 1.51213 x 10'2
4 6.548 1.511767 x 10~2
5 6.540 1.51103 x 10"2
6 6.530 1.50957 x 10'2
7 6.519 1.50664 x 10'2 6.56
8 6.516 1.50078 x 10-2
9 6.525 1.48906 x 10"2
10 6.541 1.4656 x 10~2
11 6.555 1.4187 x 10"2
12 6.563 1.3255 x 10~2
13 6.569 1.139 x 10"2
14 6.573 0.756 x 10~2
15 0.0

k is the number of the station along the crystal 
Dimensions are cm sec  ̂and cm (31)Theoretical velocity calculated following Ivantsov
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TABLE 7. PHYSICAL CONSTANTS FOR TIN USED IN THE CALCULATIONS*

Equilibrium melting temperature 505°K

Heat of crystallization 13.96 cal gm

Density of solid 37.3 gm cm

Density of liquid
36.98 gm cm

Thermal conducitivity of liquid 0.082 cal cm

Specific heat of liquid 0.060 cal gm

Interfacial surface
—  236 erg cm

* Taken from Reference 32
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2. Simulation of a Non-Isothermal Dendrite

Calculations were next performed on a non-isothermal dendrite 

following the Temkin model. The attachment of atoms at the crystal surface 

was assumed to be easy, requiring no driving force. A bath supercooling of 

3°C was assumed, and the physical constants for tin (Table 7) were employed. 

Because the initial conditions did not correspond to the steady state 

solution for the non-isothermal dendrite, the growth velocity was calculated 

by allowing the calculation to pass through several time increments. This 

gave the temperature field opportunity to develop the correct form from 

the approximate distribution used to start the calculation. A range of tip 

shapes were used in the calculations, in an attempt to determine a maximum

velocity for the dendrite growth.
The results are summarized in Figure 45, where the results predicted

by Ivantsov's equation are shown for comparison. A peak velocity of about
-1 -46.5 cm sec occurs for a tip radius of about 1.0 x 10 cm. This is

rather slower than predicted by Temkin1s equations* (11.1 cm sec ) and less
_4

curved (Temkin's equations predict a tip curvature of 0.39 x 10 cm). For 

all the cases studied, the tip velocity was slowly falling and the curvature 

of the tip became flatter as the growth simulation proceeded.
Long term calculations were next attempted, in an attempt to 

study the development of the crystal shape with time. It was possible to 

model growth to the extent of 10 - 15 tip radii, which took 200 microseconds 

of "real" time, and about 200 seconds of computer time. After this period,

* This calculation was performed by G. Kotler, using a computer solution 
to the Temkin equations(34).
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the program gradually developed an instability, and the calculation had to 

be terminated. An example of the result given by this procedure is shown in 

Figure 46. For this particular instance, a bath supercooling of 5°C fur tin 

was assumed; the computer crystal tip radius did not become as small as 

that predicted for optimum velocity, and consequently the velocity was much 

less than the optimum for a tin crystal growing under these conditions.

3. Modification to Increase Stability

A full discussion of the stability of computer calculations exceeds 

the scope of this dissertation. However, a brief discussion is germane to 

the dendrite model development and to other work described in subsequent 

chapters.
One viewpoint of the stability of computer models originates with 

the idea of "open" and "closed" form calculations. In the present context, 

a closed form calculation is one in which there is only one unknown and 

which therefore can be solved exactly. An expression in open form contains 

more than one unknown which must be guessed. This idea can be illustrated 

by the models which have already been described. In the heat flow calcula­

tions the expressions were in closed form. The solution was exact subject 

to the approximations of the models. The simulation of the casting was in 

open form, and hence liable to become unstable. The number of nuclei 

forming in a time increment or the instantaneous rate of eutectic growth were 

both unknown and dependent upon the change in degree of undercooling. The 

stability of the model resulted from the short time increments used in the 

computation, so that the unknowns in the calculation were guessed with only 

slight error. It was possible to induce instability by using very long time
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intervals, with the characteristic result that the results for each time

increment varied widely about the mean, and the variation increased with

each calculation loop (time increment). The mathematical theory of stability
(37)for computer models is still in an embryo state of development.

Fortunately, it was preceded, by many years, by the study of techniques to

control stability.
Although the dendrite model could be operated stably when it was 

used with great care, it was potentially unstable. This arose from the 

assumption that the orthogonal network was unchanged throughout the time 

increment. Clearly, the flow channel must move to some extent, and a zero

estimate could only be correct for short intervals. To make the model more
(38 )tractable, a form of the Runge-Kutta method^ ' was employed. The objective 

was to make a better estimate of the position of the heat flow channels.

The position of the isotherms was already relaxed in the one-dimensional 

heat flow calculation. The sequence of calculations was as follows:

(a) Dendrite growth was computed as before, assuming that 

the orthogonal curves remained fixed.

(b) The amount of surface growth and the temperature 

changes throughout the field were stored in the 

computer memory.
(c) The network was then moved to find a new set of 

orthogonal heat flow channels.

(d) The isotherms were then moved back up the new 

channels so that the original temperature field 

was restored, but with altered flow channels.
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(e) A second calculation of dendrite growth was made.

(f) The mean surface growth and the mean temperature 

changes were then found.
(g) The network was moved on the basis of the mean 

changes in preparation for a new loop through the 

calculation. This procedure is equivalent to the 

assumption of a mean position for the heat flow 

channels during each time pulse.
The additional computer time involved in this more complex procedure 

was more than balanced by the longer time increments which could be used.

4. Tin Dendrites Simulated by the Runge-Kutta Model

The variation of tip velocity and tip radius with time for a

simulation using the Runge-Kutta routines is shown in Figure 47. The crystal

model was growing into a bath undercooled 3°C and initially had the optimum
-1

(Temkin) tip radius. The optimum (Temkin) tip velocity was 6.5 cm sec .

It can be seen that the computation had almost completely "settled down" 

by the fourth loop through the calculation and that subsequently the 

velocity changed smoothly with time. All the early points on the velocity­

time curve are shown. Later points, which lay on the smooth curve are not 

all shown. The dendrite tip velocity fell gradually, and at the same time, 

the tip curvature increased slowly (that is, the needle became blunter).

The axial velocities at the other stations along the crystal (moving back 

from the tip) remained fairly constant at the Ivantsov velocity.

The slowing of the crystal growth is not surprising. The initial 

conditions postulate a parabola of revolution, which according to Ivantsov's
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result, maintains it shape if curvature effects are ignored. When curva­

ture is included in the computation, it has a negligible effect on the 

axial growth velocity of the crystal away from the extreme tip. These 

parts of the crystal therefore continue to grow with the "Ivantsov" velocity. 

The tip, on the other hand, is drastically slowed. The difference in 

velocity between the tip and adjacent regions of the crystal can be seen 

in Figure 45. Whereas the tip velocity is related to the tip curvature by 

the lower (solid) curve, the axial velocity of the remainder of the crystal 

follows the upper (dashed) line. Clearly a crystal growing in a pure melt 

in a temperature field resembling the Ivantsov solution cannot have a 

parabolic form; if it is given this shape, it progressively becomes blunter.

At this stage, it seemed appropriate to change the profile of

temperature field, in an attempt to force the crystal to accelerate. The

boundary conditions remain those described in Section 2 of this chapter.

A crystal of the optimum tip curvature was forced to grow with a faster tip

velocity than the Temkin or Ivantsov velocities. As a result, the tip

radius became sharper. The results are shown in Figure 48(a) and (b). The

tip radius fell initially because of the perturbation but rapidly increased,
-4leveling off at the optimum tip radius of 1.0 x 10 cm. The tip velocity 

also leveled off at about the same stage of growth and then began to fall 

gradually. This result would seem to indicate some independence from the 

initial temperature field and illustrates how excessive tip curvature is 

rapidly lost.

5. Long-Term Growth of Tin Dendrites 

A streamlined version of the calculation was next developed, to
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FIGURE 48. SLOWING OF A DENDRITE INITIATED AT FASTER
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permit simulation of crystal growth for longer periods. Part of the 

speeding process was the removal of most of the data output, and concen­

trating output on only the most significant results. Unfortunately, this 

"streamlining" process introduced a bookkeeping error into the calculation, 

which perturbed the initial calculation of the Runge-Kutta sequence by about 

15% on alternate loops through the calculation. The absence of data output 

made the error impossible to find and since the mean results were in close 

agreement with those obtained previously, they will be described for their 
qualitative importance.

Figure 49 shows the smoothed velocity of the crystal tip plotted 

against the real time after the initial conditions had been applied. The 

growth of the crystal was accompanied by changes in the crystal shape and 

a fall in growth velocity. Figure 50 shows the shape of the crystal at 

intervals during the period of growth. Figure 51 shows the increase in 

crystal size during the growth simulation. The amount of growth is shown 

by the blacked area, which is the difference in the crystal shape at the 

beginning and the end of the computation. The figure also shows some of the 
isotherms near the crystal surface.

The development of "branches" in the neighborhood of the tip is 

noteworthy. These projections were accelerating during the whole period of 

growth. Their behavior can be contrasted to the manner in which the tip 

fell back when it was perturbed beyond its optimum curvature. One of the 

major reasons for the difference in behavior can be found in the temperature 

depression due to curvature. The side projections are inadequately penalized 

for their curvature because of the shortage of points of the network. The 

growth of the surface has separated the points which describe the surface
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near the tip. In consequence, the curvature of the projections cannot be 

properly estimated. This is made clear by Figure 51, which shows the tip 

shape to be triangular. Also noteworthy is the small extent of growth in 

the regions distant from the tip. Although the axial growth was fairly 

uniform over the whole surface, the rate tangential to the surface falls 

off drastically. This observation suggests that branches are unlikely to 

originate far from the crystal tip because perturbations have a very low 

rate of growth even if they are stable. This was exemplified by this 

study; axial growth rates did vary along the surface although the effect 

cannot be seen in the plots of the crystal shape.
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CHAPTER X: THE DEVELOPMENT OF CRYSTAL SHAPE

1. The Maximum Velocity Principle

(32)Previous treatments of dendrite growth such as that of Temkin
(39)and Bolling and Tiller and others have always given a relationship 

between growth velocity and tip curvature, without indicating a unique 

velocity at which the crystal must grow. Mathematically, the solution was 

unspecified ; there were always two unknowns, the velocity and the tip 

radius. The dilemma was overcome by the arbitrary choice of the maximum 

velocity and the consequent tip radius as the velocity with which a crystal 

would grow. The basis for this assumption lay in the physical nature of 

the problem. It was assumed that in some way the crystal would "optimize 

itself". The need for such an assumption derives from a simplification 

introduced into the treatment of the problem, namely that a specific crystal 

could be assumed. A whole family of problems exist which face the same 

difficulties, for the same sort of reasons, and which require the postulation 

of principles such as "maximum penetration", "maximum rate of entropy 

production", each selected to fit the physical nature of the problem in hand.

The present treatment did not involve any of the arbitrary 

principles mentioned and should not have needed one because none of the 

physical variables were fixed arbitrarily. The study of the computer calcu­

lation shed new light upon the natural optimization process.

2. "Natural Selection" of Tip Shape

In the calculations described, it was found to be impossible to 

maintain an excessively sharp tip curvature. This is illustrated by
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Figure 48. The tip velocity fell rapidly because of the depression of 

melting temperature, which not only reduced the temperature gradient in 

front of the tip, but also tilted forward the direction of maximum 

temperature gradient at each side of the tip, constricting the heat flow 

channel for the tip region. This is a description of one part of the 

selection process— an excessively sharp crystal tip falls back and conse­

quently the curvature is reduced.
There seemed to be no penalty attached to excessively flat tip 

curvature. As illustrated by Figures 49, 50, and 51, it seems that the 

tip can become progressively flatter apparently without any process which 

can restore the tip shape and increase its velocity. It is believed that 

this is due to a flaw in the computer model and that in nature there does 

exist a mechanism which restores the tip sharpness. Figures 50 and 51 show 

that the slowing of the tip velocity (and reduction of its curvature) 

causes "buds" to form at the shoulders of the crystal. In the calculations, 

these projections accelerated continually and they were forming side 

branches on the main crystal. If they had been properly described by an 

adequate number of points on the crystal surface, they would have been 

penalized in precisely the same way as the crystal tip when it had excessive 

curvature. The consequence would be the same; primarily the orthogonal 

lines (the lines of steepest descent through the temperature field) would 

be tilted outwards, reducing the width of the heat flow channels for the 

"buds". In tilting sideways, they open up the heat flow channels for the 

tip region, driving the terminal region forward in a new burst of growth.



www.manaraa.com

147

3. Oscillatory Growth

The study of dendrite growth by a computer model gave no hint 

that the crystal would ever attain a stable shape which would grow with a 

uniform velocity. Instead, a clear picture of dynamic development emerged 

in which the tip shape and velocity appeared to oscillate between two 

extremes. This picture is consistent with the observed dendrite morphology, 

since each oscillation leads to a side branch. Thus the branching frequency 

is the same as the oscillatory frequency. The model also showed clearly 

that branching must take place near the tip, because of the very slow 

growth of perturbations on the crystal stem. It seemed that the very flat 

temperature field adjacent to the stem of the crystal changed very slowly, 

and that side growth must be initiated near the tip if it is to lead to 

massive branches.
Because of the limitations of the model which was studied (not 

fundamental to the simulation of the problem) it was impossible to show 

the cyclic growth of the crystal. The model did, however, give strong 

clues concerning the basis for cyclic growth. The mechanisms of the cycle 

have already been discussed. The driving force for such a process exists 

in the increased mean rate of precipitation possible in such a sequence.

A dendrite growing in a pure melt is limited by its ability to liberate 

latent heat of freezing. In oscillatory growth, the cycle through high and 

low curvature regimes incorporates the maximum amount of the liberated 

energy into the solid crystal as surface energy. This can be regarded as a 

means of carrying energy away from the growing surfaces. This is 

particularly easy to visualize if a moving coordinate system is referenced
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on the crystal tip. The curved surface and its associated energy 

continually moves down the crystal. The energy can also be seen as bands 

of high pressure at the root of side arms and low pressure in the regions 

between the arms. Such ideas can be extended to include the presence of 

solute (predicting bands of high and low solute content by analogy with 

pressure). When there is a density change upon solidification, oscillatory 

growth would cause the generation of a sonic wave in the liquid. For pure 

tine, dendrites growing into a bath undercooled 5°C, the frequency would be 

in the kilocycle range. Such sonic waves have never been sought in 

properly designed experiments.
Oscillatory growth of dendrites suggested by this model, recently 

received experimental backing from the work of Morris and Winegard^°\ 

Studying the growth of dendrites in a succinonitrile-5% camphor melt, they 

clearly showed the sequence followed in the generation of side branches. 

Their illustration of the steps of a growth cycle is shown in Figures 52(a)-

(d). The branching process followed that suggested by the model with some 

precision. First the tip moved forward (Figure 52a). Then it slowed due 

to excessive curvature and "buds" formed at the shoulders. These "buds" 

grew rapidly outwards (Figures 52 c) and then the tip was again driven 

forward (Figure 52 d).
Ideas such as these give clues about analytical approaches which 

might bear fruit in the study of side branching. Clearly, the optimization 

of the oscillation frequency to give the maximum growth rate should give 

the optimum side branch rate, which with the rate of crystal growth would 

predict the crystal side branch spacing. They also predict that the mean 

rate of crystal growth should be higher than Temkin forecast, since some
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FIGURE 52. TIP OF A DENDRITE SHOWING PROGRESSIVE STEPS IN TIP 
MORPHOLOGY DURING THE COURSE OF ONE "PULSE CYCLE".
THE TIME INTERVAL BETWEEN a AND b WAS 1.2 sec,
BETWEEN b and c 1.2 sec, AND BETWEEN c and d 2.1 sec. 
MAGNIFICATION - 310X
After L. R. Morris and W. C. Winegard, J. Crystal Growth, 

(1967) 245-246
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energy is removed by pressure waves in the solid, and by sonic energy in 

the liquid. This may well remove the need for the somewhat artificial 

reduction of the surface energy constant (see Chapter VII) which was 

necessary for Temkin to achieve agreement between theory and experiment.
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CHAPTER XI: SPECIAL FORMS OF DENDRITE GROWTH

1. Varieties of Dendrite Growth

As far as this work is concerned, the characteristic which iden­

tifies dendrite growth is the direction of the gradients in the surrounding 

field. When the gradients slope away fran the crystal, removing growth 

products, the growing crystal should possess some or all of the characteris­

tics of a dendrite. Many of the special forms of dendrite have great 

commercial and theoretical interest. However, the case which has been 

simulated is perhaps the most simple form of dendrite; this has proved to 

be difficult to treat analytically. Therefore, the more complicated fontis 

are even more suitable candidates for the model approach than the simple 

situation which has just been treated.
Special forms of dendrite growth result from three broad (and 

overlapping) groups of reasons. The first form derives from special types 

of attachment mechanism, which cause anisotropic growth. Examples of den­

drites whose morphology is controlled in this way are to be found in 

whiskers, many of which result from the development of a single screw dis­

location.^29  ̂ A second class (which includes all real dendrites) involves 

anisotropic crystal properties. In the model, which has just been made, the 

crystal was assumed to be isotropic, and hence, a body of revolution. In 

reality, there would be anisotropy in both of the possible angular direc­

tions. This controls the direction of growth^1"1'* and strongly affects the 

branching of the crystal. The third class is one in which the far field 

boundary condition is not uniform. In this class are arrays of dendrites 

(in which the crystal is influenced by its neighbors), spherulities (where
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the members of the array are arranged at noncrystallographic angles), and 

in fact all highly branched single dendrites.

All the special forms of dendrite mentioned above can be 

simulated with varying amounts of difficulty by extension and modification 

of the model.

2. Arrays and Spherulites - Discussion

Dendritic arrays and spherulites are members of the same class of 

problem, in which the far field boundary conditions are modified. The new 

feature is the presence of a surface of symmetry, which lies between members 

of the array. In other words, the crystal and thermal field lying within 

such a surface forms the building block from which the whole array can be 

constructed. Repetition of this unit allows the construction of the whole 

array. This is illustrated by Figure 53, which shows schematically some 

of the isotherms and lines of heat flow of a parallel array of dendrites 

growing into a pure supercooled melt. The dotted lines are sections through 

the surface of symmetry and will be termed symmetry lines. Isotherms 

cross the surface of symmetry at right angles. The lines of heat flow tend 

to become parallel to the surface of symmetry as they move away from the 

crystal. The symmetry line has the properties of an orthogonal (heat flow) 

line, representing the line of heat flow from the roots of the two adjacent 

crystals, assumed to be an "infinite" distance from the tips in this 

parallel array.

The dendrite model which has already been described possessed an 

immovable orthogonal line which had many of the properties of the symmetry 

line. Hie lower orthogonal line was fixed, and the isotherms were allowed
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UNDERCOOLED LIQUID BATH

Figure 53 PARALLEL ARRAY OF DENDRITES i LINES OF 
HEAT FLOW AND ISOTHERMS (SCHEMATIC)
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to slide along it like beads on a string. This suggested a simple modifi­

cation which would permit simulation of arrays. If the orthogonal line 

from the root of the crystal were initially set up correctly, it would 

have the properties of the symmetry line, and the model would simulate a 

single member of an array of dendrites. One major reservation must be 

made, concerning the "body of revolution" assumption. Clearly, an array 

of dendrites of finite size and spacing does not have cylindrical or 

conical surfaces of symmetry. However, a cylinder or cone may not be a 

very bad approximation to the 6-sided "tubes" of an isotropic array.

3. Arrays and Spherulites - Initial Conditions

Preparation of the initial conditions presented the major problem 

in simulation of an array. Although some analytical studies have been made, 

there is no mathematical description of the thermal field, which is both 
general enough to treat parallel and spherulitic arrays, and simple enough 

to be readily employed in the preparation of initial conditions. A simple 

approach was eventually formulated which employed a numerical transformation 

of the coordinate system.
Referring to Figure 54, the position of the symmetry line was 

described by a reference point and its angle to the X ordinate. This line 

is shown dotted in the figure. Orthogonal (heat flow) lines were next 

fitted within the symmetry line. The lower orthogonal line was assumed to 

have a parabolic form, leaving the crystal surface at right angles, and 

approaching the symmetry line to touch at a remote point in the liquid bath. 

The orthogonal line adjacent to the tip was assumed to be unaffected by the 

neighboring dendrites. A series of cones (or cylinders) was then constructed.
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The cones were members of a family with a common apex (the meeting point of

the symmetry lines which is the centre of a spherulitic system of dendrites).

The apertures of the cones were spaced smoothly between the cone (or

cylinder) of symmetry and the orthogonal adjacent to the axis, (K=3).

Orthogonal lines from all reference points on the crystal surfaces were then

constructed as parabolae, derived in the same manner as the lower orthogonal.

The isotherms were next produced. The positions of the isotherms

on the axis of the crystal were assumed to be unaffected by the neighboring

crystals and found from the El functions as before (Chapter VIII). Now the

isotherms had to be projected from the axis, through the set of orthogonals.

This was done numerically using a form of the "shooting" method described

in Chapter VIII, Section 10. Part of the resulting network is shown in

Figure 54, where the cone angle was 80 degrees, the reference point was
-40.015 cm, and the tip radius was 1.0 x 10 cm.

4. Arrays and Spherulites - Results and Discussion

The sharp curvature of the orthogonal lines at the root of the 

crystal violated one of the assumptions of the model; i.e., that they could 

be approximated by straight lines running from one orthogonal to the next. 

Nearer the crystal tip, this problem disappeared, because the isotherms lay 

more closely together. The difficulty was overcome by moving the root of 

the crystal out to the dotted position 0-A (Figure 54). This line also is 

at right angles to the lower orthogonal line.
The growth of the spherulite model shown in Figure 54 was simulated. 

Figure 55 shows a single crystal stem and the first four isotherms at the 

start of the calculation, and Figure 56 the same features after 100 loops
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through the simulation. The distribution of the isotherms has changed 

considerably, tending to smooth the temperature profile along the ortho­

gonals near the root of the crystal. The tip became progressively blunter 

(Figure 57) and the velocity slowed as shown in Figure 58. As might be 

expected, the tip velocity was slightly lower than for the single needle 

(about 4.5 compared to 6.5 cm sec ) and the axial velocity fell towards 

the root, finally being about half the axial velocity of the shoulders of 

the crystal.
The model used in this simulation is probably unrealistic, because 

it does not include a treatment of fluid flow. When an array of needles 

freezes with a density difference between solid and liquid, fluid is
(42)extruded from or sucked into the space near the roots of the needles . 

Consequently, diffusive flow of heat (or particulary solute) may become of 

less significance than heat removal by fluid transport.

5. Anisotropic Crystals

Axial anisotropy is included in the model fairly readily. For

example, surface energy was related to the angle of the tangent to the
(43)surface by the fairly simple law :

Y = y  cos 9 + Y sin 9 ,'m ' t s

where Y  is the surface energy of the surface, y is that of the tip of the 'm c
crystal, that of the ëide face (at right angles to the tip). Q is the 

angle made by the tangent to the surface with the X axis. Inclusion of 

this law had a negligible effect upon the growth of the crystal, even when
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provided that y was the same as in the isotropic crystal model. It would 

undoubtedly alter the frequency of any velocity fluctuation and hence the 

spacing of the side branches. This unfortunately could not be determined 

with the model which was employed.
The simple surface energy relationship was employed for illustra­

tive purposes only. In a more meaningful examination of the effect of 

anisotropy, a more sophisticated model would be used. Certainly, the 

limiting feature would not be the computer model, since at the limit it 

could interpolate from a table of values with the expenditure of a trivial 

amount of computer time compared to the more complex routines which have 

already been described. A more difficult problem would be presented by the 

existence of "rotational" anisotropy, so that the crystal could no longer 

be simulated by a body of revolution. The preparation of an additional set 

of orthogonal planes to give a fully three-dimensional model would be a 

major undertaking.
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CHAPTER XII: BUBBLE GROWTH AND ELECTRON BEAM DIFFRACTION

1. The Generality of Modelling Methods

The introductory section (Chapter II) defined two main areas of 

application of computer models. These were the use of models to enable basic 

knowledge to be extended to more complex situations of technological 

importance, and the use of models to study complicated materials problems 

on a basic level. The ideas were subsequently developed by the modelling 

of a casting system and by the more basic study of dendrite growth. Both of 

these problems were oriented towards the science and technology of solidifi­

cation. The closing chapter will be devoted to the viewpoint that the 

particular application of the methods is unimportant, and that the problems 

which have been examined in detail are representative of classes of problems 

which occur in all areas of materials science.

One of the examples which will be briefly described here is 

primarily of interest because of the techniques which it illustrates. The 

Runge-Kutta method was mentioned in Chapter IX. This example illustrates 

the use of iterative procedures and the Predictor-Corrector method in a 

situation where there are large numbers of unknown quantities, representing 

a major stability problem. However, because this model was developed from 

the model of a casting described in Section B and applied to a problem of 

general interest in kinetics, it also illustrates the general utility of 

the modelling methods. That is, despite the fact that a model is developed 

for a specific situation only, the routines so developed can often be used 

in a wide range of simulations with only a small amount of modification.
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Furthermore, although no attempt will be made to itemize 

methods and approaches, certain features will be seen to crop up with 

regularity.
A second example which pertains to electron microscopy highlights 

this comment. The treatment of electron beam patterns by the column method 

is strikingly similar to the model for dendrite growth which was developed 

independently.

2. Ostwald Ripening and Bubble Growth

A study of irradiated nuclear fuel material provided an interesting 

exercise in the stability of a numerical computation. In this problem, an 

array of bubbles of a range of sizes was assumed to be present in irradiated 

fuel material containing an excess of dissolved gas. The fuel was heated 

(out of the nuclear pile) to a temperature below the melting point. The 

aim was to simulate the behavior of real fuel in real experiments as a 

preliminary to the further development of the model for simulating the fuel 

behavior in-pile. The model followed the time variation of the bubble size 

distribution, the matrix gas content, and the swelling of the fuel. The 

assumptions upon which the model was based were that the bubbles were 

independent, with nonoverlapping diffusion fields, and that the material was 

isothermal. Both of these assumptions could be removed in a more complex 

model. Size changes occurred through the coupled diffusion of gas atoms and 

vacancies. This situation has been studied theoretically by Saralidze, 

et al.(^) who derived solutions to the terminal states but was unable to 

solve the problem for intermediate conditions.
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Suppose the model to be set to study the development of an array 

of, say, 100 bubble sizes, each size group containing large numbers of 

bubbles. This approximates to a continuous size distribution. Consider the 

development of this array of bubbles during a time interval. Relationships 

exist for the change of gas content for a bubble of fixed radius and with 

fixed matrix gas content. Similarly, relationships exist for the change in 

radius of a bubble of fixed gas content. Conservation of gas atoms dictates 

the change in matrix gas content with change of gas content of all the 

bubbles. Thus, in this example, there are 201 unknowns and 201 equations. 

However, simultaneous solution of the equations is extremely time consuming 

and the process would have to be repeated many times to simulate the develop­

ment of the array for any extensive period of time. Therefore, the equations 

were not solved simultaneously. If the matrix gas content were known 

throughout the time interval, and the radius of each of the bubbles were 

also known (this assumes that the time dependence is known) then the gas 

content change is specified for each size group. Taking the time dependence 

of radius and matrix gas content from the first terms of a Taylor series 

expansion of these variables, the unknowns are the terminal radii for each 

size group and the terminal gas content. For this example, these yield 

101 unknowns. The computation can therefore be regarded as a calculation 

which cannot be expressed in closed form (Chapter IX) and treated as a 

stability problem. However, after a few cycles through the calculation, the 

rate of change in size of each group of bubbles is quite accurately known. 

Similarly, the change in matrix gas content with time is also known. Hence, 

the final size of all the bubbles and the final matrix gas content can be 

predicted with some accuracy. These predicted values are used in the first
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calculation to predict the changes in radii and matrix gas content which

actually occur. The predicted values are then employed in a repeated

calculation to obtain a more accurate estimate. This sequence is termed
(38)the Predictor-Corrector method.

The results of simulations using this model give good agreement 

with experiment, and it is interesting to compare its predictions with the 

more simplified analytical results. Figure 59 shows the relationship 

between the mean bubble radius and time, compared to the result forecast by 

Speight (1968). The analytical model simplified the problem to a single

bubble radius. The computer model, for an array of sizes, showed the same 

general form of behavior, as would be expected. The mean radius at 

saturation (after a long period of time) was lower than the calculated 

value, as predicted by qualitative arguments. The change in matrix gas 

content with time is analogous to a dispersed spherical precipitate. The 

results are shown in Figure 60, revealing that the gas content change 

tended to follow an exponential law after an initial ripening period.

This is in accord with simple kinetic theory.^

3. The Transmission of an Electron Beam Through a Foil

The variation in the transmitted intensity of electron beams after
(47)

passage through a foil has been studied by Whelan, et al. , by 
Amelinckx^48\  and other workers. The observations cannot be explained by 

simple theory, but require the dynamic theory of diffraction^  ̂ (which 

takes into account the diffraction and attenuation of the beam on passage 

through the foil) in order to give even a qualitative explanation of the 

observations. The first quantitative descriptions were achieved for simple
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dislocation ribbons by Whelan and his coworkers using a computer model 

approach called the Column Method. This approach has been extended to 

the study of other more complex defects by Amelinckx and other workers. 

Further extension has been made by Dingley, Amelinckx, and Oldfield in 

unpublished work.
The Column Method is very analogous to the one-dimensional 

treatment of diffusive flow used in the study of dendrite growth in 

Chapter VII. A slice of a foil specimen is considered to be subdivided 

into a series of noninteractive columns. The individual columns are 

equivalent to the heat flow channels constructed orthogonally to the 

isotherms, and they have similar properties. However, because of the 

small angular scattering of the electron beam, they are constructed 

parallel to the incident beam. Each column is further subdivided into a 

set of thin layers which form compartments which are analogous to the 

compartments of the heat flow calculation. The compartments are treated 

by the computer in sequence--the intensity of the incident electron beam 

is determined by the previous history of the beam in passing through the 

preceding compartments. Using the value of the incident beam and assuming 

that the thickness of the compartment was very small (permitting first order 

approximations to be made to the Schrddinger equation), the transmitted and 

scattered components of the beam could be determined. The intensity of 

the transmitted beam was then used as the incident intensity for the next 

compartment and so on through the foil thickness. However, a compartment 

might differ from its neighbors, possessing a dislocation, stacking fault 

or other defect. This alters the extent of phase change and the scattering 

of the compartment. By incorporating defects in compartments as they occur
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in the foil, the trace to be expected from any defect or combination of 

defects can be synthesized. The synthetic traces can then be used to 

identify the defects present in real foils by characterizing the traces.

This is illustrated by the results of Figure 61 taken from the book by 

Amelinckx^®\ This compares the experimental electron micrograph and 

synthetic traces for a foil containing dislocations.
The major difference between this model and that for diffusive 

flow is in the treatment of the conservation equations for the sets of 

compartments. In the diffusion problem, the set of equations is solved 

simultaneously. In this model, they are solved independently by neglecting 

the small doubly scattered portion of the beam. This approximation would 

result in instability in repeated calculations like those used to study the 

time variation of the temperature distribution. However, the passage of 

the electron beam is effectively independent of time and only one pass is 

made through the.calculation. Thus, instabilities do not have the 

opportunity to develop.

4. Extension of the Ideas

In the second part of this chapter, the computer model for bubble 

growth was likened to the model for freezing cast iron from which it was 

developed. The similarity between these models likes in the spherical nature 

of the precipitates (bubbles in one case and eutectic cells in the other), 

and in the nucléation and growth features which will be present in the final 

simulation of a fuel material in a nuclear reactor. However, the models can 

be extended to other types of problems which possess common features. The 

bubbles can be compared to a set of noninteracting sites, which permit 

adsorption of other species. Adsorption of the species can be likened to
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the coupled diffusion of gas atoms and vacancies. Thus, this type of model 

could form the basis for the study of lattice statistics. Similarly, a 

whole class of problems could be studied by models of this type.
The study of dendrite growth indicates pathways to the study of 

many other sectors of materials science. The most obvious generalization 

stems from the similarity of growing voids in solids to growing dendrites. 

Whereas a dendrite growing in a liquid is an anisotropic crystal in an 

isotropic medium, a void or crack is an isotropic "crystal" of vacancies 

growing in an anisotropic medium. Thus, the dendrite model has a potential 

application in crack mechanics and in void migration in nuclear fuels. 

Extending the ideas further, the numerical transformation of coordinates 

developed within this model could be applied to a range of mathematical 

problems.

5. Summary and Conclusions

Computer model methods are an extension of the classic scientific 

approach, whereby a quantitative understanding of an unknown phenomenon can 

be gained by means of a conceptual system of well understood, simple 

processes. In this dissertation, computer model methods have been presented 

from a physical and relatively nonmathematical point of view. The objective 

was to emphasize the ease with which they can be applied to extend our 

knowledge of materials in situations which cannot be treated analytically.

To attain the objective set out for this work, the approach was 

developed in four stages.
(1) The first stage was designed to demonstrate that computer 

model methods are a simple extension of the analytical mathematical approach.
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This was done by comparing the solution of a simple heat flow problem by 

Fourier methods with a solution by a computer model. Both approaches were 

shown to given identical results (Table 1) and to be similar in principle.
(2) In the second stage, a computer model was used to study the 

freezing of a casting. The basis for this section was that a complex 

phenomenon such as casting solidification embodies the interaction of a 

number of subprocesses. An understanding of each (expressed through a 

conceptual model) was included in a computer model to give an understanding 

of the system» A model for cast iron solidification was developed which 

accounted for all the main features experimentally observed in real castings„ 
The model showed how some impurities such as sulphur impede eutectic growth by 
segregating at the solid-liquid interfaces ; it also forecast the changes in 

microstructure which would result. Finally, it was used to predict the 

interaction between the eutectic nucléation and the solidification patterns 

within the castings. All these predictions could be checked experimentally 

or against published results. Certain discrepancies between the computer 

predictions and published results led to an experimental study of primary 

phase solidification. The computer predicted that the recalescence of the 

castings should lead to fragmentation of the primary austenite structure 

of the castings. This was confirmed by a series of experiments in which 

small ingots were quenched during the period of recalescence. This frag­

mentation has an important implication with regard to the mechanical 

properties of the material relating the modulus to the eutectic nucléation. 

The study of solidification patterns also provided a new explanation for 

the swelling of castings during freezing, an explanation which differed 

sharply from the accepted one. A new description of cast iron solidifi­

cation evolved from the computer study.
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(3) The third stage involved the application of computer model 

methods to more basic work. The objective was to use the computer model 

to eliminate the onerous mathematics (required in this case to solve 

diffusion problems) and allow the emphasis to be placed upon the more 

interesting aspects of the work (in this case the study of crystal growth).

A model of a growing dendrite was developed. This problem was chosen 

because of the great difficulty experienced in the conventional treatments 

in the solution of the diffusion equations which govern the development of 

the crystal. Hie choice was reinforced by the widespread occurrence of this 

crystal morphology, which has great technological importance.

The dendrite growth problem was simplified, so that only the

essential features of the growth process were included within the model.

A needle of isotropic, pure material was considered to grow into a pure,

undercooled melt. Thermal conductivity in the solid was assumed to be

negligible. The computer model approach was then used to study the growth

of such a dendrite, without the shape constraints which are normally

required by the analytical approach. The results from the model were com-
(32)pared (when appropriate) within the predictions of the Temkin and 

(31)Ivantsov equations.
(31)Using the Ivantsov equations to give initial conditions for 

the computation, the tip growth velocity for any crystal with tip radius 

smaller than or equal to the radius for optimum predicted by Temkin, 

rapidly blunted and assumed the radius and growth velocity predicted by his 

analytical treatment. Subsequently, the growth velocity fell more slowly, 

and the initial needle crystal developed branches just behind the tip. No 

branches developed nearer to the root of the crystal, because of the slow
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rates of crystal growth at positions distant from the tip. When the

branches had developed, the model was no longer a good representation of

the crystal, because the crystal had "grown out" of most of the original

network points used to represent the tip region of the crystal. There

were clear indications, however, that the tip region would have been

driven forward again shortly after branching. Thus, it was surmised that

the dendrite grows with a cyclic fluctuation in velocity, forming a new
(53 )branch in each phase of slow growth. This surmise was confirmed for

dendrites of an organic material by Morris, et al.^^.

The model was then adapted to study some special types of

dendrite growth. Dendritic arrays are of special interest. Dendrites

become arrays through branching in definite crystallographic directions,

and form a single crystal array. In some circumstances, the branches
(52 )become oriented radially and become spherulites. The model was adapted 

to simulate array growth and the growth velocity of a spherulite was 

studied. Using the appropriate physical constants for tin (as a matter of 

convenience to link with the preceding work), the growth of a spherulite 

was found to be slower than the corresponding single crystal needle. The 

particular case studied was slowed by approximately 20%. This result agrees
(54)with the observations made by Geering in a study of ice spherulites.

The model was also adapted to simulate non-isotropic crystals (in this 

case with varying surface energy).

(4) In the final stage, the preceding examples of basic and 

applied research were developed into new areas. The intention was to show 

that these models had more general application through the brief description 

of other situations into which they were adapted and by revealing analogous
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phenomena which have not yet been studied by a computer model method.

The development of an array of bubbles of varying sizes, subject 

to coupled vacancy and gas migration, was discussed first. This was an 

extension of the model for casting solidification. The model had been 

developed in connection with nuclear fuels, and it has demonstrated good 

agreement with experiment and also with calculations which can be made to 

relate to terminal situations. The problem treated by this model is an 

example of a situation in which there is a statistical distribution of 

energy states which particles (in this case gas atoms and vacancies) can 

occupy, and processes (diffusion in this case) by which the occupancy of 

the states can change. The particular case which was described was a member 

of the family of problems in which a supersaturated matrix decays to give 

an array of spherical precipitate particles. Other applications might 

include lattice statistics and other nonequilibrium thermodynamic work.

Finally, the computer simulation of transmission electron micro­

scopy was briefly discussed as an extension of the model for dendrite 

crystal growth. This approach, which has become almost a standard laboratory 

tool, illustrates an application to the solution of the wave equation. A 

similar approach could be applied to radiative heat transfer and particularly 

to coupled processes in which energy is transmitted through a medium by 

several mechanisms, including radiation.
It can be concluded that model methods have already demonstrated 

their utility in the study of materials. The method is still in its infancy-- 

there is no question that as the procedures are further developed and as 

computers become more powerful, many of the most difficult materials problems 

will be solved by the use of computer models. Furthermore, the application
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of scientific ideas to technology through computer models promises to give 

real meaning to the title "Applied Science".
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APPENDIX A 

MODEL FOR HEAT FLOW ACROSS A PLATE
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A-2

APPENDIX A-l 

MODEL FOR HEAT FLOW ACROSS A PLATE
OS/360 FORTRAN H

C ***MAIN PROGRAM
COMMON R(100),AZ(100)>BZ(100),CA(100),T(100),COND,TON(2),S,AI 

DIMENSION X(100)

C INSERT CONSTANTS 

TIME=0.0 

DTIME=0.1 

C0NST=0.005 

S=1.0 

QT1=1.0 

QT2=I.0 

W=l. 0 
J=20

LAST=100 

IDRAW=10 

C PUT IN INITIAL CONDITIONS 

DEL=W/FLOAT(J)

TINIT=100.0 

DO 1 1=1,J

S(I)=0.5*DELf FLOAT(I-1)*DEL

R(I)=DEL

T(I)=TINIT



www.manaraa.com

(184)
A-3

1 CONTINUE 

J1=J-1
DO 100 L00P=1,LAST 

DTIME=DTIME+0.2*DTIME 

TIME=TIME+DTIME 

COND=CONST*DTIME 

WRITE(6.20) LOOP,TIME 

C MODEL FOR THE OUTER BOUNDARY 
CALL BOUND2(QT1,DTIME,J)

DO 2 1=2,J1

N=J-I+1
C MODEL FOR A CENTRAL BOUNDARY 

2 CALL CENTRE(N)

C MODEL FOR AN INNER BOUNDARY 
CALL INNER2(QT2,DTIME,1)

C SOLVE THE TWO EQUATIONS GOVERNING THE INNER COMPARTMENT'S TEMPERATURE 

DT=(CZ(1)-CZ(2))/(AZ(2)/BZ(2)-AZ(1)/BZ(1))

T(1)=T(1)+DT

J4=l
WRITE(6,10)T(1),DT.J4 

DO 3 1=2,J
C CHANGE THE TEMPERATURES PRIOR TO A NEW LOOP 

DT=DT*AZ(I)/BZ(I)+CZ(I)

T(I)=T(I)+DT
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WRITE(6,10) T(I),DT,I

IF(FLOAT(LOOP)/IDRAW-LOOP/IDRAW.NE.0) GO TO 100

DO 4 1=1,J

FX=X(I)

PY=T(I)

CALL P0INT1(I,PX,PY)

CALL CURVE1(I,1,5)

CONTINUE

CALL TITLE!('TEMP')

CALL TITLE1('ERAT')

CALL TITLE 1 CURE')

CALL TITLE1('V X ')

CALL GRAPHIC 10.,1 T',7.0' X 1)

FORMAT(10X,'T = ',E14.7,10X,'DT =',E14.7,10X,1J =', 

FORMAT(////,10X,'LOOP IS ',15,10X,'TIME IS ',E14 

RETURN
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SUBROUTINE CENTRE(/N/)
COMMON R(100),AZ(100),BZ(100),CZ(100),T(100),COND,TON(2),S,AI 

CLINF(RI,RO,PI,P2,P3)=(P2-P )/ROf(P3-Pl)/(RI+RO)+(P2-Pl)/RI 
CSQF(RI,RO,P1,P2,P3)=(RI*(P3-P2)-RO*(P2-P1)/(RI*RO*(RI+RO))

S LOPEF(A,B,POS)=A+ 2.0*B*POS 

VOLUME(AI,AO,U)=(AI+AO)*U/2.0 

SLNC=CLINF(R(N),R(N+1),T(N-1),T(N),T(N+1))

SQC =CSQF(R(N),R(N+1),T(N-1),T(N),T(N+1))

TON(2)=TON(l)

POS=R(N)/2.0

TON(1)=SLOPEF(SLNC,SQC,POS)

AO=AI

AI=AREA(N,2)

WIDTH=(R(N)+R(N+l))/2.0 

V=VOLUME(AI,AO,WIDTH)

AZ(N)=AI*COND/(2.0*R(N))
BZ(N)=AZ (N)+COND*AO*(1.0-AZ(N+l)/BZ(N+l))/(R(N)*2.0)+V*S 

CZ(N) =COND*(AO*(TON(2)+CZ(N+-1 )/ (2. 0*R(N) ))-AI*TON(1))/BZ(N) 

RETURN 

END
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SUBROUTINE BOUND2(QT1,DTIME,N)
COMMON R(IOO),AZ(IOO),BZ(100),CZ(100),T(100),COND>TON(2),S,AI

CLINF(RI,RO,Pl,P2,P3)=(P2-P3)/ROl-(F3-Pl)/(RI+RO)+(P2-Pl)/RI

CSQF(RI,RO,P1,P2,P3)=(RI*(P3-P2)-RO*(P2-P1))/(RI*RO*(RI+RO))

S LOPEF(A,B,POS)=A+2.0*B*POS 
VOLUME(AI,AO,U)=(AI+AO)*U/2.0 

SLNC=CLINF(R(N-1),R(N),T(N-2),T(N-1),T(N))

SQC=CSQF(R(N-1),R(N),T(N-2),T(N-1),T(N))

TB=SQC*(R(N)+R(N-1))**2+SLNC*(R(N)+R(N-1))+T(N) 

P0S=R(N)/2.0fR(N-l)

TON(1)=SL0PEF(SLNC,SQC,POS)

AO=AREA(N,1)

AI=AREA(N,2)

WIDTH=R(N)

V=VOLUME(AI,AO,WIDTH)

AZ(N)=AI*COND/(2.0*R(N))

B Z(N)=AI*COND/(2.0*R(N))+S*V
CZ(N)=(-COND*AI*TON(1 )+AO*QTl*DTIME)/BZ (N )

WRITE(6,1) TB
1 FORMAT(50X,'TEMPERATURE OF OUTER SURFACE IS ',E14.7)

RETURN

END
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SUBROUTINE INNER(QT2,DTIME,N)
COMMON R(100),AZ(100),BZ(100),CZ(IOO),T(100),COND,TON(2),S,AI 

VOLUME(AI,AO,U)=(AI+AO*U/2.0 

T0N(2)=T0N(1)

AI=AREA(N,1)

AO=AI

WIDTH=R(N)

V=VOLUME (AI,AO,WIDTH)

BZ(N)=COND*AO/(2.0*R(2))

AZ(N)=BZ(N)+S*V
CZ(N)=(-COND*AO*TON(2)+AI*QT2*DTIME)/BZ(N)

RETURN

END
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APPENDIX B 

HEAT FLOW ACROSS A CYLINDER

Referring to Figure B-1,R^ is the radial diameter, R^^ is the center 

line, equal to zero. R̂ ' is the radial center of mass of the outer annulus, 

Rg' of the next annulus, and so on.

Let the temperature of each annular volume (at the radial center of

mass) be T̂ , T^,.....T̂ , prior to a time increment in which heat is

removed through the outer surface, latent heat liberated, and temperature 

changes occur.

Considering the outer shell:

-Q + J2 + (LH)1 - S V AT1 = 0 , (A-l)

where
Q is the heat crossing the outer boundary into the mold

J2 is the heat crossing the surface formed by radius R^

(LH)^ is the latent heat liberated in annulus 1

S is the specific heat per unit volume

is the annular volume

AT^ is the change in temperature which takes place in the annulus 
of outer radius R̂ .

r(T - 1/2AT ) - (t + l/2ATi) )
J9 = At k. W  ( A. , (A-2)
2 1  ̂ Rl' ' R2' )

where
is the mean thermal conductivity between R^1 and R^'

At is the time increment

A^ is the surface area of the interface between annuli 1 and 2.
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Substitution of equation (B-2) into equation (B-l) gives :

-Q + ax (T2 - T1) + (4T2 - A T ^  + (LH)1 - S V A ^  = 0 .

In this expression:

At
a, =1 2(Ri' - r2')

Then:

AT1(ai + S V) = AT2 aL + 2ax (T2 - T^) - Q + (LH)1

Rearranging:

In this expression,

AI1 = ̂  AT2 + ''l •

(W)1 - Q + 2ax (T2 - T1)
^  r,  •

Similar expressions can be derived for the other annuli. Using 

the same symbols, but replacing the 1 by i:

-J. + J._ + (LH). - S V.AT. = 0i i+l i i i

Retaining the definition of a:

2ai<Ti+i - V  + V ATi+i - ATi> - 2ai-i(Ti - Ti-i> - ai-i
(AT - AT._1) + (m)i - S Vt AT - 0 . (B-4)

However, AT^  ̂can be related to AT^ as shown in the first calculation:
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Substituting this relation into equation (B-4)

a
-ATi K -(1 ■ Biit’+ ai+ 5 vi] + iTi« ai + 2ai<Ti+i ■ Ii)

- 2ai-i<Ti - Ti.i) + (LH>i = 0

Hence, the result is again obtained:

ATi = Yi + ̂  ATi+i ’ < B ' 5 >

where

- a i-l(1 - F T »  + ai + s vi
^ 1 -  I

- 2a..1(Tr T1_1) + alY,.1+ (U».
1 "  h

Finally, the center annulus can be treated. In this case, there 

is no inner surface, so that a heat flux flows only into the n-1 annulus.

The conservation equation can be written:

-J + (LH) - S V AT = 0 n n n n

Substituting the equation for (equation B-2):

-2a (T -T ,) - a .(AT -AT .) + (LH) - S V AT = 0 n-1 n n-1 n-1 n n-1 n n n

Substituting for AT n:n-1

-Ain an - (1 - V i )  + S Vn - + (Ifl)n - 0.
pn-l

Rearranging:
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This result gives the change in temperature at the center of the bar. 

Since all the coefficients a, g, and y are stored in the computer memory, 
they can be used in conjunction with equation (B-5) to yield the new 

temperature at all stations across the bar.
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MAIN PROGRAM FOR THE PLOTTING OF COOLING CURVES

OS/360 FORTRAN H

C MODEL FOR FREEZING SPHERICLE CELLS, ROUND BAR DIAM 0, WITH GAMMA 
INTEGER IN(60,13)
DIMENSION R(300,20),X(20),COND(20),S92),FVS(20),XMIN(20),J(20), 

1C(2),P(300,20),SA(20),NE(20),E(20),V(20),DX(20),ALH(20),RAD(21), 

2ATEMP(19),BTEMP(19),TIME(19),AZ(20),BZ(20),CZ(20),RID(20),

3BLH(20),CL0ST(20),AG(20),DAT(13)

COMPO(TEMP)=CEUf(TEMP-1153.0)/SLOPEV 

READ(5,1) DAT(1),(IN(K,1),K=1,60)

NRUNS=DAT(1)

DO 95 KOUNT=l,NRUNS 

C INITIALLIZATION 

IPLOT=KOUNT+1 

WRITE(6,6)

DO 1000 1=2,13
READ(5,1) DAT(I),(IN(K,I),K=1,60)

1000 WRITE(6,1) DAT(I),(IN(K,I),K=1,60)

WRITE(6,6)

D=DAT(2)*2.54 

DQ=DAT(3)

A=DAT(4)

B=DAT(5)

BB=DAT(6)

AA=DAT(7)
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TLIQ=DAT(8)

SL0PEV=DAT(9)
BL=DAT(10)

CEU=DAT(11)
SK=DAT(12)

NDIV=DAT(13)

RAD(NDIV+1)=0.0 

NIP=0 

LOP=0 

EU=1153.0 

C(l)=0.378 

C(2)= 0.189 

S(l)=l.66 

S(2)=1.44 

AL=430.0

DQ=DQ*3.1459*D*D/240.0*(S(1)-AL/(SL0PEV*(1.0-SK)*COMPO(1158.0)))

DT=3.142*D*D*0.20 /DQ*BB

Q=DQ*DT

DO 49 K=1,NDIV

RID(K)=D/2.0*SQRT(FLOAT(2 *NDIV+1-2*K)/FLOAT(2*NDIV))

49 RAD(K)=D/2.0*SQRT(FLOAT(NDIV+1-K)/FLOAT(NDIV))

DO 210 K=1,NDIV

210 CLOST(K)=(RAD(K)*RAD(K)*RAD(K)-RAD(K+l)*RAD(K+l)*RAD(K+l))*2.0/3.0 

1/(RAD(K)*RAD(K)-RAD(K+1)*RAD(K+1))

DO 50 K=1,NDIV 

AG(K)=0
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E(K)=OXMIN(K)=EU 

ALH(K)=1.OE-9 

FVS(K)=1.OE-9
V(K)=3.142*(RAD(K)*RAD(K)-RAD(K+1)*RAD(K+1))

X(K)=1170.0 

FVS(K)=0 

J(K)=0 

SA(K)=0

DO 50 L=l,300

R(L,K)=0

50 P(L,K)=0 

AT=DT 

11=1
WRITE(6,4)D,DQ,Q,B,BB,C(l),C(2),S(l),S(2),EU>AL,TLIQ,SLOPEV,BL 

1,CEU,SK 

WRITE(6,6)

WRITE(6,2)

C END OF INITIALLIZATION

C SCANS THE SUBVOLUMES IN TURN

C I IS THE SUBVOLUME INDEX

C M IS THE SIZE INDEX

51 DO 61 1=1,NDIV

IF (TLIQ-X(I)) 52,52,53

52 ASSIGN 101 TO NEXT

C X(I) IS ABOVE THE LIQUIDUS (NEXT=101)

GO TO 57
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53 ASSIGN 54 TO NEXT
C X(I) IS AT OR BELOW THE LIQUIDUS (NEXT=54)

57 IF (EU-X(I)) 100,100,58

58 IF(1.O-FVS(I)) 59,59,60

C X(I) BELOW THE EUTECTIC TEMPERATURE

59 11=2
C COMPLETELY SOLID

NIP=1+NIP 

GO TO 101

60 IF (300-J(I))

100 GO TO NEXT,(101,54)

C X(I) AT OR ABOVE THE EUTECTIC TEMPERATURE
54 CALL GAMM(V,DX,SLOPEV,ALH,AGjFVS,BL,I,AMOUNT,CEU,SK,X,EU)

C X(I) ABOVE THE EUTECTIC BUT BELOW THE LIQUIDUS

C COOL

101 COND(I)=C(II)
C X(I) ABOVE BOTH EUTECTIC AND LIQUIDUS

ALH(I)=0 

GO TO 61 

C END OF COOL

C FREEZE

150 SA(I)=0

IF (X(I)-XMIN(I)) 151,153,153

151 J(I)=J(I)+1 

JI=J(I)
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C APPLY THE NUCLEATION LAW
P ( J I , I )  = (1.0-FVS(I)*A*(2.0*(EU-X(I))*(XMIN(I)-X(I)H(XMIN 

1/(I)-X(I))*(XMIN(I)-X(I)))*V(I)

IF (P(JI,I)-0.01) 152,149,149

149 XMIN(I)=X(I)

E(I)=E(I)+P(JI,I)

GO TO 153

152 P(J 1,1 )=0

153 DR=B*((EU-X(I))**AA)*DT 

JI=J(I)

DO 156 M=I,JI 
R(M,I)=R(M,I)+DR

C CORRECT FOR CELL-MOLD WALL CONACT
FLOST=(R(H,I)+CLOST(I)-D/2.0)/(2.0*R(M,I))

IF (FL0ST)154,154,155
154 SA(I)=12.566*R(M,I)*R(M,I)*P(M,I)4-SA(I)

GO TO 156
155 SA(I)= 12.566*R(M,I)*R(M,I)*P(M,I)*FLOST+SA(I)

156 CONTINUE

C CORRECT FOR CELL-CELL CONTACT

SA(I)=SA(I)*(1.O-FVS(I))

FVS(I)=SA(I)*DR/V(I)+FVS(I)

BLH(I)=SA(I)*DR*AL
COND(I)=C(l)-FVS(I)*(C(l)-C(2))

NIP=0

C END OF FREZZE
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CALL GAMMA(V,DX,SLOPEV,ALH,AG,FVS,BL,I,AMOUNT,CEU,SK,X,EU)

AL(I)=ALH(I)+BLH(I)

61 CONTINUE

C SOLVE

200 CONTINUE

DO 199 K=2,NDIV

L=NDIV-K+1
199 COND(L)=(COND(L)*(RAD(L)-RID(L)+COND(L-l)*(RID(L-l)-RAD 

1(L)))/(RID(L-l)-RID(L))

DO 198 K=2,NDIV 
198 AZ(K)=COND(K)*DT*3.142*RAD(K)/(RID(K-l)-RID(K))

MOL=NDIV-1
BZ(NDIV)=AZ(NDIV)+V(NDIV)*(S(1)-FVS(NDIV)*(S(1)-S(2)))
CZ(NDIV)=(ALH(NDIV)-AZ(NDIV)*(X(NDIV)-X(MOL))*2.0)/BZ

1(NDIV)
DO 201 LI=2,MOL 

I=NDIV+1-LI
BZ(I)=AZ(I+1)*(1.0-AZ(I+1)/BZ(I+1))+AZ(I)+V( I)*(S(1)

1-FVS(I)*(S(1)-S(2)))
201 CZ(I)=(AZ(I+1)*(X(I+1)-X(I)+CZ(I+1)*0.5)+ALH(I)*0.5-AZ

1(I)*(X(I)-X(I-1)))/BZ(I)*2.0 
BZ(1)=AZ92)*(1.0-AZ(2)/BZ(2))+V(1)*(S(1)-FVS(1)*(S(1)-S(2))) 

CZ(1)=(AZ(2)*(2.0*(X(2)-X(1))+CZ(2))+ALH(1))/BZ(1) 

DX(1)=DZ(1)-Q/BZ(1)

X(1)=X(1)+DX(1)

DO 202 1=2,NDIV
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DX(I)=CZ(I)+AZ(I)/BZ(I)*DX(I-1)

202 X( I)=X( I)+DX( I)

C END OF SOLVE

DO 62 K=1,NDIV 
IF(X(K).LT.1070.0 GO TO 87

IF(X(K).GT.1170.0) GO TO 88

62 NE(K)=E(K)/V(K)+0.5 

LOP=l+LOP

IF(LOP-4) 64,63,63
63 WRITE (6,3)AT,(RAD(I),X(I),NE(I),V(I),AG(I) 

1SA(I),1=1,NDIV)

CALL P0INT1(1,AT,X(1))

GAL POINT1(IPLOT,AT,X(NDIV))

L0P=0

64 AT=AT+DT

IF (NDIV-NIP)89,89,51 

C END OF MAIN PROGRAM

85 WRITE (6,5)

GO TO 90

87 WRITE (6,7)
WRITE (6,3)AT,(RAD(I),X(I),NE(I),V(I),AG(I) 

1SA(I),1=1,NDIV 

GO TO 90

88 WRITE (6,8)
WRITE (6,3)AT,(RAD(I),X(I),NE(I),V(I),AG(I) 

1SA(I),1=1,NDIV)

GO TO 90

,FVS(I),

,FVS(I),

,FVS(I),
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89 WRITE (6,9)
WRITE (6,3)AT,(RAD(I),X(I),NE(I),V(I),AG(I) ,FVS(I), 

1SA(I),1=1,NDIV)

90 WRITE (6,4) (XMIN(I),I=1NDIV)

CALL CURVE1(1,1,5)

CALL CURVE1(IPL0T,1,5)

CALL TITLEK'TEMP')

CALL TITLE1('V TI1)

CALL TITLEK 'ME ')

CALL GRAPH1(8.0,'TIME',6.0,'TEMP')

1 FORMAT(E20.7,60A1)
2 FORMAT (25X,23HFREEZING OF A ROUND BAR/12X,4HTIME,9X,

16HRADIUS,9X,4HTEMP,9X,5HCELLS,9X,6HV0LUME,9X,3HFGS ,

11IX,3HFVS,1IX,2HSA)
3 FORMAT (4X,F14.2,20(F14.6, F14.3,I14,F14.6,F14.6,F14.8,

1F14.4/18X))

4 FORMAT (8(1 X,F14.8))

5 FORMAT (4X,11HJ TOO LARGE)

6 FORMAT('1')

7 FORMAT (4X,16HX LESS THAN 1070)

8 FORMAT (4X,12HX ABOVE 1170)

9 FORMAT (4X,19HNIP Of, NORMAL EXIT)

95 CONTINUE

IF(NRUNS.EQ.l) GO TO 301 

DO 300 NPLOT=2,IPLOT 

CALL CURVE1(NPLOT,1,5)
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300 CONTINUE

CALL TITLE1('TEMP1)

CALL TITLE1('V TI')

CALL TITLE1('ME ')

CALL GRAPH1(8.0,'TIME',6.0,'TEMP')

301 RETURN 

END



www.manaraa.com

(205)

C-ll

SUBPROGRAM TO CALCULATE THE AMOUNT OF AUSTENITE LIBERATED

SUBROUTINE GAMMA(V,DX,SLOPEV,ALH,AG,FVS,BL,I,AMOUNT,CEU,SK,X,EU)

DIMENSION V(20),DX(20),ALH(20),AG(20),FVS(20),X(20)

C(MPO(TEMP)=CEU+(TEMP-1153.0)/SLOPEV
DELTA=1.0-(COMPO(X(I))/COMPO(X(I)+DX(I)))**(1.0/(1.0-SK))

AMOUNT=V(I)*DELTA*(1.0-FVS(I))

ALH(I)=AMOUNT*BL 

AG(I)=AG(I)+DELTA 

FVS(I)=FVS(I)+DELTA 

RETURN 

END

TYPICAL SET OF DATA CARDS FOR A CALCULATION

50

51
52

53

54

55

56

57

58

4.0THE NUMBER OF RUNS, NRUNS 

0.6THE DIAMETER OF THE BAR IN INS, D 

311.OTHE COOLING RATE, DEG. C./MtN 

2.86THE NUCLEATION CONSTANT 

29.OE-5THE GROWTH CONSTANT (PRE-EXPONENTIAL)

1.OTHE SENSITIVITY-DETERMINES THE TIME INCREMENT 

0.78THE GROWTH RATE EXPONENT 
1165.OTHE LIQUIDUS TEMPERATURE FOR THE ALLOY DEG C 

-171.OTHE SLOPE OF THE LIQUIDUS LINE 

430.OTHE LATENT HEAT OF FUSION OF THE PRIMARY PHASE
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3.7THE EUTECTIC CARBON CONTENT 

0.25THE PARTITION COEFFICIENT 

5.OTHE NUMBER OF RADIAL SUBDIVISIONS 

0.875THE DIAMETER OF THE BAR IN INS, D 

185.OTHE COOLING RATE, DEG. C./MIN 

2.86THE NUCLEATION CONSTANT 

29.0E-5THE GROWTH CONSTANT (PRE-EXPONENTIAL)
1.OTHE SENSITIVITY-DETERMINES THE TIME INCREMENT 

0.78THE GROWTH RATE EXPONENT 
1165.OTHE LIQUIDUS TEMPERATURE FOR THE ALLOY DEG C 

-171.OTHE SLOPE OF THE LIQUIDUS LINE 
430.OTHE LATENT HEAT OF FUSION OF THE PRIMARY PHASE 

3.7THE EUTECTIC CARBON CONTENT 

0.25THE PARTITION COEFFICIENT 

5.OTHE NUMBER OF RADIAL SUBDIVISIONS 

1.2OTHE DIAMETER OF THE BAR IN INS, D 

77.OTHE COOLING RATE, DEG. C./MIN 

2.86THE NUCLEATION CONSTANT 

29.0E-5THE GROWTH CONSTANT (PRE-EXPONENTIAL)

1.OTHE S ENSITIVITY-DETERMINES THE TIME INCREMENT 

0.78THE GROWTH RATE EXPONENT 
1165.OTHE LIQUIDUS TEMPERATURE FOR THE ALLOY DEG C 

-171.OTHE SLOPE OF THE LIQUIDUS LINE 

430.OTHE LATENT HEAT OF FUSION OF THE PRIMARY PHASE 

3.7THE EUTECTIC CARBON CONTENT 

0.25THE PARTITION COEFFICIENT
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5.OTHE NUMBER OF RADIAL SUBDIVISIONS 

1.6THE DIAMETER OF THE BAR IN INDS, D 

43.4THE COOLING RATE, DEG. C./MIN 

2.86THE NUCLEATION CONSTANT 

29.0E-5THE GROWTH CONSTANT (PRE-EXPONENTIAL)
1.OTHE SENSITIVITY-DETERMINES THE TIME INCREMENT 

0.78THE GROWTH RATE EXPONENT 

1165.OTHE LIQUIDUS TEMPERATURE FOR THE ALLOY DEG C 

-171.OTHE SLOPE OF THE LIQUIDUS LINE 

430.OTHE LATENT HEAT OF FUSION OF THE PRIMARY PHASE 

3.7THE EUTECTIC CARBON CONTENT 

0.25THE PARTITION COEFFICIENT 

5.OTHE NUMBER OF RADIAL SUBDIVISIONS
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SAMPLE OF OUTPUT DATA
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APPENDIX E

COMPUTER PROGRAM TO MODEL DENDRITE GROWTH 

Main Program
OS/360 FORTRAN H

THIS PROGRAM IS DESIGNED TO CALCULATE THE GROWTH OF A DENDRITE 

AS A RESULT OF HEAT FLOW. IT CAN BE MODIFIED TO TREAT SOLUTE 

DIFFUSION PROBLEMS, BUT THE DIFFUSION PARAMETERS MUST BE CHOSEN 

WITH CARE TO AVOID UNDER AND OVERFLOW PROBLEMS. IT WILL TREAT 

DENDRITE ARRAYS, AND CRYSTALS WITH NON-ISOTROPIC SURFACE ENERGIES.

IF SOLID FLOW IS TO BE CONSIDERED, A FURTHER PROCEDURE IS NEEDED 

WHICH IS NOT INCLUDED WITH THIS PACKAGE.

INTEGER IN(60,15)

REAL*8 RI,RO,P1,P2,Pe,CSQF 

REAL*8X,Z,AZ,B Z,XSURF,ZSURF
COMMON X(50,50),Z(50,50),XSURF(50),ZSURF(50),AZ(50),BZ(50),CZ(50), 

1ZM(50),XM(50),SM(50),NPAR,NORTH,ZO,FO,TS,TINF,COND,E,G,TEQ,AH,

2T0N(2),S,AI,DT,JIN,DTIME,CEFF,CS1,SLOP1,CHANGA,CONDS,SS.BASE,TOP, 
3OUT,FLOIN,CHANGE,DPREST,BEFF,DELTAT(50,50),T(50,50)r(50,50) 

DIMENSION DAT(15)
CSQF(RI,RO,P1,P2,P3)=(RI*(P3-P2)-RO*(P2-P1))/(RI*RO*(RI+RO))

READ(5,2) NRUNS,(IN(K,1),K=1,60)

WRITE(6,16)
DO 130 KOUNT=l,NRUNS 

READ IN DATA FOR EACH CASE TO BE STUDIED 

READ(5,2) NPAR,(IN(K,2),K=1,60)

READ(5,2) NORTH,(IN(K,3),K=1,60)
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READ(5,2) LOOPS,(IN(K,4),K=1,60)

WRITE(6,2) NRUNS,(IN(K,1),K=1,60)

WRITE(6,2) NPAR,(IN(K,2),K=1,60)

WRITE(6,2) NORTH,(IN(K,3),K=1,60)

WRITE(6,2) LOOPS,(IN(K,4),K=1,60)

DO 30 1=1,15

READ(5,3) DAT(I),(IN(K,I),K=1,60)

30 WRITE(6,3) DAT(I),(IN(K,I),K=1,60)

C NOW CHANGE THE INPUT DATA INTO THE TRIVIAL TERMS USED IN THE CALCUL- 

C ATION.

OMEG=DAT(1)

FO=DAT(2)

ZO=DAT(3)
TINF=DAT(4)

TS=DAT(5)

TEQ=DAT(6)

S=DAT(7)

AH=DAT(8)

COND=DAT(9)
BEFF=DAT(10)

SS=DAT(11)

CEFF=DAT(12)

DTIME=DAT(13)

WRITE(6,8)

NCONE=l

COND=COND*DTIME
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IF(DAT(14).LE.0.0) GO TO 64 

IF(DAT(14)-90.0) 57,58,61

57 A2=TAN(DAT(14)*3.14159/180.0)

GO TO 59

58 A2=l.0E6
C THIS IS FOR PARALLEL ARRAYS AND SETS THE BOUNDARIES AT A VERY SLIGHT

C ANGLE TO ONE ANOTHER FOR CONVENIENCE.

59 BOUND=DAT(15)/2.0 

NC0NE=2

64 CONTINUE
C SET UP THE INITIAL NETWORK. NETCOM MAKES THE TIP TEMPERATURE PROFILE

C FOLLOW THE El FUNCTION, AND FOR SINGLE NEEDLES EXTENDS THE CRYSTAL

C AND THE ISOTHERMS AS CONFOCAL PARABOLAE. THE ORTHOGONALE ARE STARTED

C ON THE CRYSTAL SURFACE WITH SPACING GIVEN BY A POWER SERIES, THE

C POWER ADJUSTED TO MAKE THE ISOTHERM-ORTHOGONAL SPACING RATIO AT THE

C TIP BE 1:15.
CALL NETCOM(NCONE,BOUND,A2,&13)

LAST=NPAR-1 

LOWER=NORTH-1 

DO 63 J=1,LAST 

XM(J)=X(J,NORTH)

ZM(J)=Z(J,NORTH)
63 SM(J)=(Z(J+1,N0RTH)-Z(J,NORTH))/(X(J+l,NORTH)-X(J,NORTH))

CALL M0VER(&13)

CALL HUNT(&13)

ACT=0.0

HUMP=50.0*DTIME
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C HUMP IS A CONSTANT WHICH DETERMINES WHEN THE ARRAYS ARE PRINTED. 

TIME=0.0
ZSURF(2)=R(2,2)/2.0 

C THE START OF THE MAIN CALCULATION 

CALL P0INT1(9,0.0,0.0)

DO 12 L00P=1,LOOPS

IWAY=1
IF(ACT.GT.HUMP) CALL PUTOUT(ACT)

WRITE(6,6)

999 CONTINUE
C THE FOLLOWING STATEMENTS CALCULATE THE TEMPERATURE DEPRESSION DUE TO

C CURVATURE AT THE TIP. VALUES FOR OTHER STATIONS DOWN THE CRYSTAL

C ARE CALCULATED IN INNER AND INNER2 ROUTINES.
DAR=CSQF(X(1,3),X(1,3),Z(1,3),Z(1,2),Z(1.3))

DPREST=-4.0*CEFF*DAR 

RH0=-0.5/DAR 

ANEWT=TEQ-DPREST
C CHANGA IS USED WHEN HEAT FLOW IN THE SOLID IS BEING CONSIDERED 

CHANGA=T(1,2)-ANEWT 

T(1,2)=ANEWT 

WRITE(6,14)

WRITE(6,4) DPREST,ANEWT,CHANGA,RHO 

GO TO 909 

7 COND=COND*DTIME

909 CONTINUE
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SLOP1=0.0

CS1=1.0

DO 10 K=2,LOWER
C OUTER APPLIES THE FAR FIELD BOUNDARY CONDITION. JIN IS THE INDEX

C OF THE THIRD ISOTHERM FROM THE NON-ISOTHERMAL SURFACE, AND IS

C CALCULATED IN OUTER.
CALL OUTER(NPAR,K)

JEND=JIN+1

DO 9 M=JEND,LAST

N=LAST-MKJEND
C CENTRE APPLIES THE CONSERVATION EQUATION FOR THE CENTRAL COMPARTMENTS

9 CALL CENTRE(N,K)
C INNER APPLIES THE CONSERVATION CONDITION FOR THE SURFACE BOUNDARY

C AND CHANGES ALL TEMPERATURES. IT CALCULATES SURFACE GROWTH.

GO TO (40,50),IWAY 

40 CALL INNER(K,&19,TIME)

10 CONTINUE

IF(IWAY.EQ.1) GO TO 60 

TIME=TIME+DTIME 

ACT=ACT+DTIME 

C MOVER FINDS THE NEW POSITIONS FOR THE ISOTHERMS 

60 CALL MOVER(&13)
C HUNT IS THE MOST COMPLEX ROUTINE USED. IT FINDS THE NEW ORTHOGONALE 

IF(IWAY.EQ.2)GO TO 12 

CALL CRECT1(&13,IWAY)

GO TO 999
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C PUTOUT WRITES AND PLOTS THE TEMPERATURE FIELD 

19 CONTINUE

WRITE(6,15) DTIME,ACT,TIME 

GO TO 7

12 WRITE(6,1)LOOP 

GO TO 62

61 WRITE(6,17)

62 WRITE(6,16)
C AFTER THE CALCULATION HAS BEEN COMPLETED, THE DATA ARE REPRINTED 

DO 31 1=1,15 

31 WRITE(6,3) DAT(I),(IN(K,I),K=1,60)

CALL PUTOUT(ACT)

13 WRITE(6,18)

CALL CURVE1(9,1,3)

CALL TITLE1('VELO')

CALL TITLE1('CITY')

CALL TITLE1C V T')

CALL TITLEK 'IME')

CALL GRAPH1(8.0,'TIME',6.0,'VEL ')

130 WRITE(6,20)

1 FORMAT(50X,5HLOPP=,15)

2 F0RMAT(I20,60A1)

3 FORMAT(E20.7,60A1)

4 FORMAT(4+20.9)

5 FORMAT(10X,5f20.9)

6 FORMAT(///)
8 FORMAT(//.10X,'THIS CALCULATION GENERATES ITS OWN NETWORK',//)
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14 FORMAT(10X,6HDPREST,14X,5HANEWT,15X,6HCHANGA,14X,6HRADIUS)

15 FORMAT(2X,6HDTIME=,E12.5,10X,4HACT=,El2.5,10X,5HTIME=,El2.5)

16 FORMAT('1',30X,'INPUT DATA',//)
17 FORMAT(5X, "THE INPUT DATA WAS FAULTY. THE CONE ANGLE WAS GREATER 

1THAN 90 DEGREES.')
18 FORMAT(2X,'NON-STANDARD RETURN FROM HUT OR MOVER')

20 FORMAT('1')

RETURN

END
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Line of Steepest Descent Through a Temperature Field 
From a Non-Isothermal Surface

The computer calculation fits a quadratic relationship between 

the Z and X coordinates of the three adjacent points on the crystal surface 

(taking the two points on either side of the desired portion). Differen­
tiating, the slope of the tangent is found, and thence the sine and cosine 

of the angle of the tanget line with the X and Z coordinates. In a similar 

fashion, taking the three nearest points lying outwards in the temperature 

field, the sine and cosine of the angle at the surface made by a line 

through the points outwards into the thermal field can be calculated.
Using a radial coordinate system (taking the radial distances between the 

points) the temperature gradients in the two directions can be found.

These quantities are sufficient to allow the calculation of the line of 

steepest descent through the temperature field.
Consider the diagram of Figure E-l. This shows in three dimen­

sions the relationships near the surface. The circle of radius dR is inter­

sected by the two lines at angles (X and 8 with the X ordinate. At the 

points of intersection, the temperature change dT is shown as a vertical 

projection. dTO. and dTg are the temperature decreases at a distance dR from 

the origin at angles a and 8 to the X axis. Figure E-2 shows the isothermal 
surface which passes through both of the points and through the origin.

This can be imagined to form an ellipse when the dR circle is projected on 

to it. The line of steepest descent is the major axis of the ellipse. In 

the calculation which follows, the direction of the minor axis will first 

be found, and from it the gradient of the major axis.
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Figure E-l Finding: the Axis of Zero Temperature Gradient 
from the Temperature Gradients in Two Known Directions

steepest 
A

Figure E-2 The Direction 
of Steepest Descent as the 
Major Axis of an Ellipse in 
the Zero Temperature Plane

radient

X axis
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Consider the projection of the points A and B to a point C for 

which dT is zero. Let the coordinates of C be u and v for the X and Z 

axes, respectively. In the Z coordinate only:

dTa  =  d!.g—  . (E-l)
v+dRsinO. v+dRsinf3 

Similarly, taking the X ordinate:

dTa = dTg . (E-2)
u-dRcostt u-dRcosB 

Suitable manipulation of (E-l) and (E-2) yields:

v I cosa dTP - cosg dTa l /F ,x
“  U " sinp dTa - sina dT̂ J '

Equation (E-3) is the direction of steepest descent through the thermal 

field. Further manipulation leads to the form which was most convenient 

for computation:

Gradient - | ̂ £2S|>Aiii|- 1 I jtanB - ^  ^

where
dTa


